Coupling nanomaterials with biomolecular recognition events represents a new direction in nanotechnology toward the development of novel molecular diagnostic tools. Here a graphene oxide (GO)‐based multicolor fluorescent DNA nanoprobe that allows rapid, sensitive, and selective detection of DNA targets in homogeneous solution by exploiting interactions between GO and DNA molecules is reported. Because of the extraordinarily high quenching efficiency of GO, the fluorescent ssDNA probe exhibits minimal background fluorescence, while strong emission is observed when it forms a double helix with the specific targets, leading to a high signal‐to‐background ratio. Importantly, the large planar surface of GO allows simultaneous quenching of multiple DNA probes labeled with different dyes, leading to a multicolor sensor for the detection of multiple DNA targets in the same solution. It is also demonstrated that this GO‐based sensing platform is suitable for the detection of a range of analytes when complemented with the use of functional DNA structures.
A fluorescence sensor for Ag(I) ions is developed based on the target-induced conformational change of a silver-specific cytosine-rich oligonucleotide (SSO) and the interactions between the fluorogenic SSO probe and graphene oxide.
DNA hybridization can finely regulate the intrinsic glucose oxidase like catalytic activity of AuNPs owing to the marked difference in adsorption of single‐ and double‐stranded DNA on its surface. A sensing strategy for DNA and microRNA is presented; in a different approach, this DNA‐regulated AuNP catalysis was coupled with AuNP‐mediated seed growth, which was monitored in real time and at a single‐nanoparticle level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.