Ustilaginoidea virens (Cooke) Takah is an ascomycetous fungus that causes rice false smut, a devastating emerging disease worldwide. Here we report a 39.4 Mb draft genome sequence of U. virens that encodes 8,426 predicted genes. The genome has B25% repetitive sequences that have been affected by repeat-induced point mutations. Evolutionarily, U. virens is close to the entomopathogenic Metarhizium spp., suggesting potential host jumping across kingdoms. U. virens possesses reduced gene inventories for polysaccharide degradation, nutrient uptake and secondary metabolism, which may result from adaptations to the specific floret infection and biotrophic lifestyles. Consistent with their potential roles in pathogenicity, genes for secreted proteins and secondary metabolism and the pathogen-host interaction database genes are highly enriched in the transcriptome during early infection. We further show that 18 candidate effectors can suppress plant hypersensitive responses. Together, our analyses offer new insights into molecular mechanisms of evolution, biotrophy and pathogenesis of U. virens.
Ustilaginoidea virens (Cooke) Takah (telemorph Villosiclava virens) is an ascomycetous fungus that causes rice false smut, one of the most important rice diseases. Fungal effectors often play essential roles in host-pathogen coevolutionary interactions. However, little is known about the functions of U. virens effectors. Here, we performed functional studies on putative effectors in U. virens and demonstrated that 13 of 119 putative effectors caused necrosis or necrosis-like phenotypes in Nicotiana benthamiana. Among them, 11 proteins were confirmed to be secreted, using a yeast secretion system, and the corresponding genes are all highly induced during infection, except UV_44 and UV_4753. Eight secreted proteins were proven to trigger cell death or defenses in rice protoplasts and the secretion signal of these proteins is essential for their cell death-inducing activity. The ability of UV_44 and UV_1423 to trigger cell death is dependent on the predicted serine peptidase and ribonuclease catalytic active sites, respectively. We demonstrated that UV_1423 and UV_6205 are N-glycosylated proteins, which glycosylation has different impacts on their abilities to induce cell death. Collectively, the study identified multiple secreted proteins in U. virens with specific structural motifs that induce cell death or defense machinery in nonhost and host plants.
BackgroundRice false smut caused by Ustilaginoidea virens has recently become one of the most devastating rice diseases worldwide. Breeding and deployment of resistant varieties is considered as the most effective strategy to control this disease. However, little is known about the genes and molecular mechanisms underlying rice resistance against U. virens.ResultsTo explore genetic basis of rice resistance to U. virens, differential expression profiles in resistant ‘IR28’ and susceptible ‘LYP9’ cultivars during early stages of U. virens infection were compared using RNA-Seq data. The analyses revealed that 748 genes were up-regulated only in the resistant variety and 438 genes showed opposite expression patterns between the two genotypes. The genes encoding receptor-like kinases and cytoplasmic kinases were highly enriched in this pool of oppositely expressed genes. Many pathogenesis-related (PR) and diterpene phytoalexin biosynthetic genes were specifically induced in the resistant variety. Interestingly, the RY repeat motif was significantly more abundant in the 5’-regulatory regions of these differentially regulated PR genes. Several WRKY transcription factors were also differentially regulated in the two genotypes, which is consistent with our finding that the cis-regulatory W-boxes were abundant in the promoter regions of up-regulated genes in IR28. Furthermore, U. virens genes that are relevant to fungal reproduction and pathogenicity were found to be suppressed in the resistant cultivar.ConclusionOur results indicate that rice resistance to false smut may be attributable to plant perception of pathogen-associated molecular patterns, activation of resistance signaling pathways, induced production of PR proteins and diterpene phytoalexins, and suppression of pathogenicity genes in U. virens as well.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-2193-x) contains supplementary material, which is available to authorized users.
BackgroundThe absent in melanoma 2 (AIM2), a cytosolic dsDNA inflammasome, can be activated by viral DNA to trigger caspase-1. Its role in immunopathology of chronic hepatitis B and C virus (HBV, HCV) infection is still largely unclear. In this study, the expression AIM2, and its downstream cytokines, caspase-1, IL-18 and IL-1β, in liver tissue of patients with chronic hepatitis B and C (CHB, CHC) were investigated.MethodsA total of 70 patients diagnosed with chronic hepatitis were enrolled, including 47 patients with CHB and 23 patients with CHC. A liver biopsy was taken from each patient, and immunohistochemistry was used to detect the expression of AIM2 and inflammatory factors caspase-1, IL-18, and IL-1β in the biopsy specimens. The relationship between AIM2 expression and these inflammatory factors was analyzed.ResultsThe expression of AIM2 in CHB patients (89.4 %) was significantly higher than in CHC patients (8.7 %), and among the CHB patients, the expression of AIM2 was significantly higher in the high HBV replication group (HBV DNA ≥ 1 × 105copies/mL) than in the low HBV replication group (HBV DNA < 1 × 105copies/mL). The expression of AIM2 was also correlated with HBV-associated inflammatory activity in CHB patients statistically. Additionally, AIM2 levels were positively correlated with the expression of caspase-1, IL-1β and IL-18 in CHB patients, which implied that the AIM2 expression is directly correlated with the inflammatory activity associated with CHB.ConclusionsAIM2 upregulation may be a component of HBV immunopathology. The underlying mechanism and possible signal pathway warrant further study.
BackgroundThe impact of pregnancy on the clinical course of acute hepatitis B (AHB) is still largely unclear, mainly because most studies have not included matched controls. This study was conducted to investigate the clinical features and outcome of AHB in pregnancy using matched controls.MethodsConsecutive AHB inpatients who were admitted to Jinan Infectious Disease Hospital, Jinan, between January 2006 and December 2010 were evaluated and followed. Demographic data, clinical manifestations, and results of laboratory tests were compared between pregnant patients and age and sex matched non-pregnant patients at admission, discharge, and final follow-up.ResultsA total of 618 AHB inpatients were identified during the study period. 22 pregnant patients and 87 age and sex matched non-pregnant patients were enrolled in this study. Prodromal fever was less common (0% vs. 20.7%, P = 0.02), serum alanine aminotransferase levels were significantly lower, and HBsAg > 250 IU/mL rate and serum bilirubin levels were significantly higher in pregnant patients than in non-pregnant patients. After a mean (range) of 7(5.2-8.3) months follow-up, 18.2% pregnant patients and 4.6% non-pregnant patients were still HBsAg positive (P = 0.03). For pregnant patients, the relative risk (95% confidence interval) of HBsAg positive at the end of follow-up was 4.6 (1.1-20.2). The median (95% confidence interval) days of HBsAg seroclearance form disease onset in pregnant and non-pregnant patients were 145.0 (110.5-179.5) and 80.0 (62.6-97.4), respectively.ConclusionsThe HBsAg loss and seroconversion were delayed and lower in pregnant patients. Pregnancy might be a possible risk of chronicity following acute HBV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.