Networks in nature do not act in isolation, but instead exchange information and depend on one another to function properly [1][2][3] . Theory has shown that connecting random networks may very easily result in abrupt failures [3][4][5][6] . This finding reveals an intriguing paradox 7,8 : if natural systems organize in interconnected networks, how can they be so stable? Here we provide a solution to this conundrum, showing that the stability of a system of networks relies on the relation between the internal structure of a network and its pattern of connections to other networks. Specifically, we demonstrate that if interconnections are provided by network hubs, and the connections between networks are moderately convergent, the system of networks is stable and robust to failure. We test this theoretical prediction on two independent experiments of functional brain networks (in task and resting states), which show that brain networks are connected with a topology that maximizes stability according to the theory.The theory of networks of networks relies largely on unstructured patterns of connectivity between networks 3,4,6 . When two stable networks are fully interconnected with one-to-one random connections, such that every node in a network depends on a randomly chosen node in the other network, small perturbations in one network are amplified by the interaction between networks 3,6 . This process leads to cascading failures, which are thought to underpin catastrophic outcomes in man-made infrastructures, such as blackouts in power grids 3,4 . By contrast, many stable living systems, including the brain 9 and cellular networks 10 , are organized in interconnected networks. Random networks are very efficient mathematical constructs to develop theory, but the majority of networks observed in nature are correlated 11,12 . Correlations, in turn, provide structure and are known to influence the dynamical and structural properties of interconnected networks, as has been recently shown 13 . Most natural networks form hubs, increasing the relevance of certain nodes. This adds a degree of freedom to the system, in determining whether hubs broadcast information to other networks or, conversely, whether cross-network communication is governed by nodes with less influence in their own network.We develop a full theory for systems of structured networks, identifying a structural communication protocol that ensures the system of networks is stable (less susceptible to catastrophic failure) and optimized for fast communication across the entire system. The theory establishes concrete predictions of a regime of correlated connectivity between the networks composing the system. We test these predictions with two different systems of brain connectivity based on functional magnetic resonance imaging (fMRI) data. The brain organizes in a series of interacting networks 9,14 , presenting a paradigmatic case study for a theory of connected correlated networks. We show that for two independent experiments of functional networks in ta...
Real data show that interdependent networks usually involve intersimilarity. Intersimilarity means that a pair of interdependent nodes have neighbors in both networks that are also interdependent [Parshani et al. Europhys. Lett. 92, 68002 (2010)]. For example, the coupled worldwide port network and the global airport network are intersimilar since many pairs of linked nodes (neighboring cities), by direct flights and direct shipping lines, exist in both networks. Nodes in both networks in the same city are regarded as interdependent. If two neighboring nodes in one network depend on neighboring nodes in the other network, we call these links common links. The fraction of common links in the system is a measure of intersimilarity. Previous simulation results of Parshani et al. suggest that intersimilarity has considerable effects on reducing the cascading failures; however, a theoretical understanding of this effect on the cascading process is currently missing. Here we map the cascading process with intersimilarity to a percolation of networks composed of components of common links and noncommon links. This transforms the percolation of intersimilar system to a regular percolation on a series of subnetworks, which can be solved analytically. We apply our analysis to the case where the network of common links is an Erdős-Rényi (ER) network with the average degree K, and the two networks of noncommon links are also ER networks. We show for a fully coupled pair of ER networks, that for any K≥0, although the cascade is reduced with increasing K, the phase transition is still discontinuous. Our analysis can be generalized to any kind of interdependent random network systems.
a b s t r a c tThe propagations of diseases, behaviors and information in real systems are rarely independent of each other, but they are coevolving with strong interactions. To uncover the dynamical mechanisms, the evolving spatiotemporal patterns and critical phenomena of networked coevolution spreading are extremely important, which provide theoretical foundations for us to control epidemic spreading, predict collective behaviors in social systems, and so on. The coevolution spreading dynamics in complex networks has thus attracted much attention in many disciplines. In this review, we introduce recent progress in the study of coevolution spreading dynamics, emphasizing the contributions from the perspectives of statistical mechanics and network science. The theoretical methods, critical phenomena, phase transitions, interacting mechanisms, and effects of network topology for four representative types of coevolution spreading mechanisms, including the coevolution of biological contagions, social contagions, epidemic-awareness, and epidemic-resources, are presented in detail, and the challenges in this field as well as open issues for future studies are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.