In this study, a perfect metamaterial absorber (PMMA) based on an indium antimonide temperature-sensitive material is designed and investigated in the terahertz region. We demonstrate that it is an ideal perfect narrow-band absorber with polarization-insensitive and wide-angle absorption properties. Numerical simulation results show that the proposed PMMA can be operated as a temperature sensor with a sensitivity of 21.9 GHz/K. A graphene layer was added to the PMMA structure to improve the sensitivity, and the temperature sensitivity was increased to 24.4 GHz/K. Owing to its excellent performance, the proposed PMMA can be applied in thermal sensing, detection, and switching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.