The gut microbiota benefits humans via short-chain fatty acid (SCFA) production from carbohydrate fermentation, and deficiency in SCFA production is associated with type 2 diabetes mellitus (T2DM). We conducted a randomized clinical study of specifically designed isoenergetic diets, together with fecal shotgun metagenomics, to show that a select group of SCFA-producing strains was promoted by dietary fibers and that most other potential producers were either diminished or unchanged in patients with T2DM. When the fiber-promoted SCFA producers were present in greater diversity and abundance, participants had better improvement in hemoglobin A1c levels, partly via increased glucagon-like peptide-1 production. Promotion of these positive responders diminished producers of metabolically detrimental compounds such as indole and hydrogen sulfide. Targeted restoration of these SCFA producers may present a novel ecological approach for managing T2DM.
Butyrate-producing bacteria (BPB) are potential probiotic candidates for inflammatory bowel diseases as they are often depleted in the diseased gut microbiota. However, here we found that augmentation of a human-derived butyrate-producing strain, Anaerostipes hadrus BPB5, significantly aggravated colitis in dextran sulphate sodium (DSS)-treated mice while exerted no detrimental effect in healthy mice. We explored how the interaction between BPB5 and gut microbiota may contribute to this differential impact on the hosts. Butyrate production and severity of colitis were assessed in both healthy and DSS-treated mice, and gut microbiota structural changes were analysed using high-throughput sequencing. BPB5-inoculated healthy mice showed no signs of colitis, but increased butyrate content in the gut. In DSS-treated mice, BPB5 augmentation did not increase butyrate content, but induced significantly more severe disease activity index and much higher mortality. BPB5 didn’t induce significant changes of gut microbiota in healthy hosts, but expedited the structural shifts 3 days earlier toward the disease phase in BPB5-augmented than DSS-treated animals. The differential response of gut microbiota in healthy and DSS-treated mice to the same potentially beneficial bacterium with drastically different health consequences suggest that animals with dysbiotic gut microbiota should also be employed for the safety assessment of probiotic candidates.
Studies that focus on packing interactions between transmembrane (TM) helices in membrane proteins would greatly benefit from the ability to investigate their association and packing interactions in multi-spanning TM domains. However, the production, purification, and characterization of such units have been impeded by their high intrinsic hydrophobicity. We describe the polar tagging approach to biophysical analysis of TM segment peptides, where incorporation of polar residues of suitable type and number at one or both peptide N- and C-termini can serve to counterbalance the apolar nature of a native TM segment, and render it aqueous-soluble. Using the native TM sequences of the human erythrocyte protein glycophorin A (GpA) and bacteriophage M13 major coat protein (MCP), properties of tags such as Lys, His, Asp, sarcosine, and Pro-Gly are evaluated, and general procedures for tagging a given TM segment are presented. Gel-shift assays on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) establish that various tagged GpA TM segments spontaneously insert into micellar membranes, and exhibit native TM dimeric states. Sedimentation equilibrium analytical centrifugation is used to confirm that Lys-tagged GpA peptides retain the native dimer state. Two-dimensional nuclear magnetic resonance (NMR) spectroscopy studies on Lys-tagged TM MCP peptides selectively enriched with N-15 illustrate the usefulness of this system for evaluating monomer-dimer equilibria in micelle environments. The overall results suggest that polar-tagging of hydrophobic (TM) peptides approach constitutes a valuable tool for the study of protein-protein interactions in membranes.
Supplemental Digital Content is available in the text
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.