Background Liver cancer is a substantial disease burden in China. As one of the primary diagnostic tools for detecting liver cancer, dynamic contrast-enhanced computed tomography provides detailed evidences for diagnosis that are recorded in free-text radiology reports. Objective The aim of our study was to apply a deep learning model and rule-based natural language processing (NLP) method to identify evidences for liver cancer diagnosis automatically. Methods We proposed a pretrained, fine-tuned BERT (Bidirectional Encoder Representations from Transformers)-based BiLSTM-CRF (Bidirectional Long Short-Term Memory-Conditional Random Field) model to recognize the phrases of APHE (hyperintense enhancement in the arterial phase) and PDPH (hypointense in the portal and delayed phases). To identify more essential diagnostic evidences, we used the traditional rule-based NLP methods for the extraction of radiological features. APHE, PDPH, and other extracted radiological features were used to design a computer-aided liver cancer diagnosis framework by random forest. Results The BERT-BiLSTM-CRF predicted the phrases of APHE and PDPH with an F1 score of 98.40% and 90.67%, respectively. The prediction model using combined features had a higher performance (F1 score, 88.55%) than those using APHE and PDPH (84.88%) or other extracted radiological features (83.52%). APHE and PDPH were the top 2 essential features for liver cancer diagnosis. Conclusions This work was a comprehensive NLP study, wherein we identified evidences for the diagnosis of liver cancer from Chinese radiology reports, considering both clinical knowledge and radiology findings. The BERT-based deep learning method for the extraction of diagnostic evidence achieved state-of-the-art performance. The high performance proves the feasibility of the BERT-BiLSTM-CRF model in information extraction from Chinese radiology reports. The findings of our study suggest that the deep learning–based method for automatically identifying evidences for diagnosis can be extended to other types of Chinese clinical texts.
Background In personalized medicine, clinicians and health policy makers must choose the most appropriate clinical trial and make predictions for the right patient during decisionmaking [1, 2]. This approach is used to individualize medical practice. At present, clinicians can predict diseases by many methods like diagnostic imaging technique [3-7] but with fewer predictive models. In recent years, predictive modeling has been successfully applied in the medical scenarios, including the identification of risk factors [8, 9] and early detection of disease onset [10, 11]. In addition, advances have been made in using predictive modeling to predict patient outcomes [2]. The traditional predictive modeling approach involves building a global predictive model using all available training data. However, this may not be the most suitable approach for personalized
Despite the rapid development of natural language processing (NLP) implementation in electronic medical records (EMRs), Chinese EMRs processing remains challenging due to the limited corpus and specific grammatical characteristics, especially for radiology reports. In this study, we designed an NLP pipeline for the direct extraction of clinically relevant features from Chinese radiology reports, which is the first key step in computer-aided radiologic diagnosis. The pipeline was comprised of named entity recognition, synonyms normalization, and relationship extraction to finally derive the radiological features composed of one or more terms. In named entity recognition, we incorporated lexicon into deep learning model bidirectional long short-term memory-conditional random field (BiLSTM-CRF), and the model finally achieved an F1 score of 93.00%. With the extracted radiological features, least absolute shrinkage and selection operator and machine learning methods (support vector machine, random forest, decision tree, and logistic regression) were used to build the classifiers for liver cancer prediction. For liver cancer diagnosis, random forest had the highest predictive performance in liver cancer diagnosis (F1 score 86.97%, precision 87.71%, and recall 86.25%). This work was a comprehensive NLP study focusing on Chinese radiology reports and the application of NLP in cancer risk prediction. The proposed NLP pipeline for the radiological feature extraction could be easily implemented in other kinds of Chinese clinical texts and other disease predictive tasks.
Background The secondary use of structured electronic medical record (sEMR) data has become a challenge due to the diversity, sparsity, and high dimensionality of the data representation. Constructing an effective representation for sEMR data is becoming more and more crucial for subsequent data applications. Objective We aimed to apply the embedding technique used in the natural language processing domain for the sEMR data representation and to explore the feasibility and superiority of the embedding-based feature and patient representations in clinical application. Methods The entire training corpus consisted of records of 104,752 hospitalized patients with 13,757 medical concepts of disease diagnoses, physical examinations and procedures, laboratory tests, medications, etc. Each medical concept was embedded into a 200-dimensional real number vector using the Skip-gram algorithm with some adaptive changes from shuffling the medical concepts in a record 20 times. The average of vectors for all medical concepts in a patient record represented the patient. For embedding-based feature representation evaluation, we used the cosine similarities among the medical concept vectors to capture the latent clinical associations among the medical concepts. We further conducted a clustering analysis on stroke patients to evaluate and compare the embedding-based patient representations. The Hopkins statistic, Silhouette index (SI), and Davies-Bouldin index were used for the unsupervised evaluation, and the precision, recall, and F1 score were used for the supervised evaluation. Results The dimension of patient representation was reduced from 13,757 to 200 using the embedding-based representation. The average cosine similarity of the selected disease (subarachnoid hemorrhage) and its 15 clinically relevant medical concepts was 0.973. Stroke patients were clustered into two clusters with the highest SI (0.852). Clustering analyses conducted on patients with the embedding representations showed higher applicability (Hopkins statistic 0.931), higher aggregation (SI 0.862), and lower dispersion (Davies-Bouldin index 0.551) than those conducted on patients with reference representation methods. The clustering solutions for patients with the embedding-based representation achieved the highest F1 scores of 0.944 and 0.717 for two clusters. Conclusions The feature-level embedding-based representations can reflect the potential clinical associations among medical concepts effectively. The patient-level embedding-based representation is easy to use as continuous input to standard machine learning algorithms and can bring performance improvements. It is expected that the embedding-based representation will be helpful in a wide range of secondary uses of sEMR data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.