Immunotherapies using cancer-testis (CT)antigensin 1 of these patients. These allogeneic immune responses were not detectable in pretransplantation samples and in the patients' stem cell donors, indicating that CT antigens might indeed represent natural targets for graft-versus-myeloma effects. Immune responses induced by alloSCT could be boosted by active CT antigen-specific immunotherapy, which might help to achieve long-lasting remissions in patients with MM.
We previously reported results of a phase II trial in which recombinant MAGE-A3 protein was administered with or without adjuvant AS02B to 18 non-small-cell lung cancer (NSCLC) patients after tumor resection. We found that the presence of adjuvant was essential for the development of humoral and cellular responses against selected MAGE-A3 epitopes. In our current study, 14 patients that still had no evidence of disease up to 3 years after vaccination with MAGE-A3 protein with or without adjuvant received an additional four doses of MAGE-A3 protein with adjuvant AS02B. After just one boost injection, six of seven patients originally vaccinated with MAGE-A3 protein plus adjuvant reached again their peak antibody titers against MAGE-A3 attained during the first vaccination. All seven patients subsequently developed even stronger antibody responses. Furthermore, booster vaccination widened the spectrum of CD4 ϩ and CD8 ؉ T cells against various new and known MAGE-A3 epitopes. In contrast, only two of seven patients originally vaccinated with MAGE-A3 protein alone developed high-titer antibodies to MAGE-A3, and all these patients showed very limited CD4 ؉ and no CD8 ؉ T cell reactivity, despite now receiving antigen in the presence of adjuvant. Our results underscore the importance of appropriate antigen priming using an adjuvant for generating persistent B and T cell memory and allowing typical booster responses with reimmunization. In contrast, absence of adjuvant at priming compromises further immunization attempts. These data provide an immunological rationale for vaccine design in light of recently reported favorable clinical responses in NSCLC patients after vaccination with MAGE-A3 protein plus adjuvant AS02B.antibody ͉ CD4 ϩ T cell ͉ CD8 ϩ T cell ͉ immunization ͉ non-small-cell lung cancer
Purpose: Reliable data on the persistence of tumor expression of cancer-testis (CT) antigens over time and consequent analyses of the effect of CT antigen expression on the clinical course of malignancies are crucial for their evaluation as diagnostic markers and immunotherapeutic targets. Experimental Design: Applying conventional reverse transcription-PCR, real-time PCR, and Western blot, we did the first longitudinal study of CT antigen expression in multiple myeloma analyzing 330 bone marrow samples from 129 patients for the expression of four CT antigens (MAGE-C1/CT7, MAGE-C2/CT10, MAGE-A3, and SSX-2). Results: CT antigens were frequently and surprisingly persistently expressed, indicating that down-regulation of these immunogenic targets does not represent a common tumor escape mechanism in myeloma. We observed strong correlations of CT antigen expression levels with the clinical course of myeloma patients as indicated by the number of bone marrow^residing plasma cells and peripheral paraprotein levels, suggesting a role for CT antigens as independent tumor markers. Investigating the prognostic value of CT antigen expression in myeloma patients after allogeneic stem cell transplantation, we found that expression of genes, such as MAGE-C1, represents an important indicator of early relapse and dramatically reduced survival. Conclusions: Our findings suggest that CTantigens might promote the progression of multiple myeloma and especially MAGE-C1/CT7, which seems to play the role of a ''gatekeeper'' gene for other CT antigens, might characterize a more malignant phenotype. Importantly, our study also strongly supports the usefulness of CTantigens as diagnostic and prognostic markers as well as therapeutic targets in myeloma.Cancer-testis (CT) antigens are a diverse group of genes of which more than 40 families have been identified during the past 15 years (1). CT antigens have been considered promising targets for immunotherapy of human malignancies based on their tumor-restricted expression and on their immunogenicity in cancer patients. Both of these characteristics could render CT antigens important diagnostic and prognostic markers; however, thus far, this aspect of the biology of CT antigens has not intensively been explored.Although an impressive number of studies have shown expression of CT antigens in a large variety of human tumor types on the RNA as well as on the protein level (2), there has not been a single study analyzing the expression of CT antigens in a human cancer over time. This seems surprising because reliable data on the persistence of tumor-related CT antigen expression are a prerequisite for the evaluation of these tumorspecific proteins as diagnostic markers and immunotherapeutic targets, especially considering data suggesting that immunoselection might lead to down-regulation or loss of CT antigen expression in cancer patients (3,4).We have recently shown that CT antigens are commonly expressed and are capable of inducing antibody-mediated and T-cell -mediated immunity in m...
Cancer-testis antigens (CTA) represent attractive targets for tumor immunotherapy. However, a broad picture of CTA expression in acute myeloid leukemia (AML) is missing. CTA expression was analyzed in normal bone marrow (BM) as well as in AML cell lines before and after treatment with demethylating agents and/or histone acetylase inhibitors. Presence of selected CTA with a strictly tumor-restricted expression was then determined in samples of patients with AML before and after demethylating therapy. Screening AML cell lines for the expression of 20 CTA, we identified six genes (MAGE-A3, PRAME, ROPN1, SCP-1, SLLP1, and SPO11) with an AML-restricted expression. Analyzing the expression of these CTA in blast-containing samples from AML patients (N 5 64), we found all samples to be negative for MAGE-A3 and SPO11 while a minority of patients expressed ROPN1 (1.6%), SCP-1 (3.1%), or SLLP1 (9.4%). The only CTA expressed in substantial proportion of patients (53.1%) was PRAME. Following demethylating treatment with 5 0 -aza-2 0 -deoxycytidine, we observed an increased or de novo expression of CTA, in particular of SSX-2, in AML cell lines. In AML patients, we detected increased expression of PRAME and induction of SSX-2 after demethylating therapy with 5-azacytidine. With the exception of PRAME, CTA are mostly absent from AML blasts. However, demethylating treatment induces strong expression of CTA, particularly of SSX-2, in vitro and in vivo. Therefore, we propose that CTA-specific immunotherapy for AML should preferentially target PRAME and/or should be combined with the application of demethylating agents opening the perspective for alternative targets like CTA SSX-2. Am. J. Hematol. 86:918-922, 2011. V
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.