Given nonempty closed convex subsets C i ⊆ R m , i 1, 2,. .. , t and nonempty closed convex subsets Q j ⊆ R n , j 1, 2,. .. , r, in the n-and m-dimensional Euclidean spaces, respectively. The multipleset split feasibility problem MSSFP proposed by Censor is to find a vector x ∈ t i 1 C i such that Ax ∈ r j 1 Q j , where A is a given M × N real matrix. It serves as a model for many inverse problems where constraints are imposed on the solutions in the domain of a linear operator as well as in the operator's range. MSSFP has a variety of specific applications in real world, such as medical care, image reconstruction, and signal processing. In this paper, for the MSSFP, we first propose a new self-adaptive projection method by adopting Armijo-like searches, which dose not require estimating the Lipschitz constant and calculating the largest eigenvalue of the matrix A T A; besides, it makes a sufficient decrease of the objective function at each iteration. Then we introduce a relaxed self-adaptive projection method by using projections onto half-spaces instead of those onto convex sets. Obviously, the latter are easy to implement. Global convergence for both methods is proved under a suitable condition.
In 1986, Matthews generalized Banach contraction mapping theorem in dislocated metric space that is a wider space than metric space. In this paper, we established common fixed point theorems for a class of contractive mappings. Our results extend the corresponding ones of other authors in dislocated metric spaces.
Based on the recent work by Censor and Segal (2009 J. Convex Anal.16), and inspired by Moudafi (2010 Inverse Problems 26), we modify the algorithm of demicontractive operators proposed by Moudafi and study the modified algorithm for the class of firmly pseudodemicontractive operators to solve the split common fixed-point problem in a Hilbert space. We also give the strong convergence theorem under some appropriate conditions. Our work improves and/or develops the work of Moudafi, Censor and Segal, and other results.
We study the strong convergence of a hybrid steepest descent method with variable parameters for the general variational inequality GVI(F,g,C). Consequently, as an application, we obtain some results concerning the constrained generalized pseudoinverse. Our results extend and improve the result of Yao and Noor (2007) and many others.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.