<abstract> <p>In the mobile edge computing environment, aiming at the problems of few classifications of resource nodes and low resource utilization in the process of multi-user and multi-server resource allocation, a resource optimization algorithm based on comprehensive utility is proposed. First, the algorithm improves the Naive Bayes algorithm, obtains the conditional probabilities of job types based on the established Naive Bayes formula and calculates the posterior probabilities of different job types under specific conditions. Second, the classification method of resource service nodes is designed. According to the resource utilization rate of the CPU and I/O, the resource service nodes are divided into CPU main resources and I/O main resources. Finally, the resource allocation based on comprehensive utility is considered. According to three factors, resource location, task priority and network transmission cost, the matching computing resource nodes are allocated to the job, and the optimal solution of matching job and resource nodes is obtained by the weighted bipartite graph method. The experimental results show that, compared with similar resource optimization algorithms, this method can effectively classify job types and resource service nodes, reduce resource occupancy rate and improve resource utilization rate.</p> </abstract>
With the surge in tasks for in-vehicle terminals, the resulting network congestion and time delay cannot meet the service needs of users. Offloading algorithms are introduced to handle vehicular tasks, which will greatly improve the above problems. In this paper, the dependencies of vehicular tasks are represented as directed acyclic graphs, and network slices are integrated within the edge server. The Dynamic Selection Slicing-based Offloading Algorithm for in-vehicle tasks in MEC (DSSO) is proposed. First, a computational offloading model for vehicular tasks is established based on available resources, wireless channel state, and vehicle loading level. Second, the solution of the model is transformed into a Markov decision process, and the combination of the DQN algorithm and Dueling Network from deep reinforcement learning is used to select the appropriate slices and dynamically update the optimal offloading strategy for in-vehicle tasks in the effective interval. Finally, an experimental environment is set up to compare the DSSO algorithm with LOCAL, MINCO, and DJROM, the results show that the system energy consumption of DSSO algorithm resources is reduced by 10.31%, the time latency is decreased by 22.75%, and the ratio of dropped tasks is decreased by 28.71%.
With the convergence of the Internet of Things, 5G, and artificial intelligence, limited network bandwidth and bursts of incoming service requests seem to be the most important factors affecting user experience. Therefore, caching technology was introduced. In this paper, a caching placement optimization strategy based on comprehensive utility (CPOSCU) in edge computing is proposed. Firstly, the strategy involves quantifying the placement factors of data blocks, which include the popularity of data blocks, the remaining validity ratio of data blocks, and the substitution rate of servers. By analyzing the characteristics of cache objects and servers, these placement factors are modeled to determine the cache value of data blocks. Then, the optimization problem for cache placement is quantified comprehensively based on the cache value of data blocks, data block retrieval costs, data block placement costs, and replacement costs. Finally, to break out of the partial optimal solution for cache placement, a penalty strategy is introduced, and an improved tabu search algorithm is used to find the best edge server placement for cached objects. Experimental results demonstrate that the proposed caching strategy enhances the cache service rate, reduces user request latency and system overhead, and enhances the user experience.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.