The accurate identification of apple leaf diseases is of great significance for controlling the spread of diseases and ensuring the healthy and stable development of the apple industry. In order to improve detection accuracy and efficiency, a deep learning model, which is called the Coordination Attention EfficientNet (CA-ENet), is proposed to identify different apple diseases. First, a coordinate attention block is integrated into the EfficientNet-B4 network, which embedded the spatial location information of the feature by channel attention to ensure that the model can learn both the channel and spatial location information of important features. Then, a depth-wise separable convolution is applied to the convolution module to reduce the number of parameters, and the h-swish activation function is introduced to achieve the fast and easy to quantify the process. Afterward, 5,170 images are collected in the field environment at the apple planting base of the Northwest A&F University, while 3,000 images are acquired from the PlantVillage public data set. Also, image augmentation techniques are used to generate an Apple Leaf Disease Identification Data set (ALDID), which contains 81,700 images. The experimental results show that the accuracy of the CA-ENet is 98.92% on the ALDID, and the average F1-score reaches .988, which is better than those of common models such as the ResNet-152, DenseNet-264, and ResNeXt-101. The generated test dataset is used to test the anti-interference ability of the model. The results show that the proposed method can achieve competitive performance on the apple disease identification task.
In order to realize the automatic monitoring of ruminant activities of cows, an automatic detection method for the mouth area of ruminant cows based on machine vision technology was studied. Optical flow was used to calculate the relative motion speed of each pixel in the video frame images. The candidate mouth region with large motion ranges was extracted, and a series of processing methods, such as grayscale processing, threshold segmentation, pixel point expansion and adjacent region merging, were carried out to extract the real area of cows' mouth. To verify the accuracy of the proposed method, six videos with a total length of 96 min were selected for this research. The results showed that the highest accuracy was 87.80%, the average accuracy was 76.46% and the average running time of the algorithm was 6.39 s. All the results showed that this method can be used to detect the mouth area automatically, which lays the foundation for automatic monitoring of cows' ruminant behavior.
Real-time dynamic monitoring of orchard grape leaf diseases can greatly improve the efficiency of disease control and is of great significance to the healthy and stable development of the grape industry. Traditional manual disease-monitoring methods are inefficient, labor-intensive, and ineffective. Therefore, an efficient method is urgently needed for real-time dynamic monitoring of orchard grape diseases. The classical deep learning network can achieve high accuracy in recognizing grape leaf diseases; however, the large amount of model parameters requires huge computing resources, and it is difficult to deploy to actual application scenarios. To solve the above problems, a cross-channel interactive attention mechanism-based lightweight model (ECA-SNet) is proposed. First, based on 6,867 collected images of five common leaf diseases of measles, black rot, downy mildew, leaf blight, powdery mildew, and healthy leaves, image augmentation techniques are used to construct the training, validation, and test set. Then, with ShuffleNet-v2 as the backbone, an efficient channel attention strategy is introduced to strengthen the ability of the model for extracting fine-grained lesion features. Ultimately, the efficient lightweight model ECA-SNet is obtained by further simplifying the network layer structure. The model parameters amount of ECA-SNet 0.5× is only 24.6% of ShuffleNet-v2 1.0×, but the recognition accuracy is increased by 3.66 percentage points to 98.86%, and FLOPs are only 37.4 M, which means the performance is significantly better than other commonly used lightweight methods. Although the similarity of fine-grained features of different diseases image is relatively high, the average F1-score of the proposed lightweight model can still reach 0.988, which means the model has strong stability and anti-interference ability. The results show that the lightweight attention mechanism model proposed in this paper can efficiently use image fine-grained information to diagnose orchard grape leaf diseases at a low computing cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.