The triglyceride-glucose (TyG) index is a new index of insulin resistance (IR), and its association with hyperuricemia (HUA) is unclear. The aim of this study was to investigate whether TyG is an independent risk factor for hyperuricemia (HUA) in patients with nonalcoholic fatty liver disease (NAFLD). Patients and Methods: We retrospectively analyzed 461 patients with ultrasound-confirmed NAFLD and calculated the TyG index. Multivariate logistic regression was used to analyze the relationship between the TyG index and HUA in NAFLD patients. The correlation between the TyG index and HUA was further confirmed by a restricted cubic spline. Furthermore, the stability of the association between TyG index and HUA was examined using subgroup analysis. Receiver operating characteristic (ROC) curves were constructed to evaluate the predictive value of the TyG index on HUA. Multivariate linear regression was used to analyze the linear relationship between the TyG index and serum uric acid. Results: A total of 166 HUA patients and 295 non-HUA patients were included in the study. The results of multivariate logistic regression analysis showed that after controlling the confounding risk factors, TyG was still an independent risk factor for HUA (OR = 2.00, 95% CI: 1.38 −2.91, p < 0.001). Restricted cubic splines showed that HUA risk increased linearly with TyG across the entire TyG range. The ROC curve showed that TyG index was better than triglyceride in predicting HUA in NAFLD patients, with AUC values of 0.62 and 0.59, respectively. Multiple linear regression analysis showed that TyG index was significantly positively correlated with blood uric acid (B = 1.37, 95% CI: 0.67-2.08, p < 0.001). Conclusion: TyG index is an independent risk factor for HUA in patients with NAFLD. The increase of the TyG index level is closely related to the occurrence and development of HUA in patients with NAFLD.
Obesity is a metabolic disorder resulting from behavioral, environmental and heritable causes, and can have a negative impact on male reproduction. There have been few experiments in mice, rats, and rabbits on the effects of obesity on reproduction, which has inhibited the development of better treatments for male subfertility caused by obesity. Nonhuman primates are most similar to human beings in anatomy, physiology, metabolism, and biochemistry and are appropriate subjects for obesity studies. In this investigation, we conducted a transcriptome analysis of the testes of cynomolgus monkeys on high-fat, high-fructose, and cholesterol-rich diets to determine the effect of obesity on gene expression in testes. The results showed that the testes of obese monkeys had abnormal morphology, and their testes transcriptome was significantly different from that of non-obese animals. We identified 507 differentially abundant genes (adjusted p value < 0.01, log2 [FC] > 2) including 163 up-regulated and 344 down-regulated genes. Among the differentially abundant genes were ten regulatory genes, including IRF1, IRF6, HERC5, HERC6, IFIH1, IFIT2, IFIT5, IFI35, RSAD2, and UBQLNL. Gene ontology (GO) and KEGG pathway analysis was conducted, and we found that processes and pathways associated with the blood testes barrier (BTB), immunity, inflammation, and DNA methylation in gametes were preferentially enriched. We also found abnormal expression of genes related to infertility (TDRD5, CLCN2, MORC1, RFX8, SOHLH1, IL2RB, MCIDAS, ZPBP, NFIA, PTPN11, TSC22D3, MAPK6, PLCB1, DCUN1D1, LPIN1, and GATM) and down-regulation of testosterone in monkeys with dietetic obesity. This work not only provides an important reference for research and treatment on male infertility caused by obesity, but also valuable insights into the effects of diet on gene expression in testes.
Background Obese patients have been found to be susceptible to iron deficiency, and malabsorption of dietary iron is the cause of obesity-related iron deficiency (ORID). Divalent metal transporter 1 (DMT1) and ferroportin (FPN), are two transmembrane transporter proteins expressed in the duodenum that are closely associated with iron absorption. However, there have been few studies on the association between these two proteins and the increased susceptibility to iron deficiency in obese patients. Chronic inflammation is also thought to be a cause of obesity-related iron deficiency, and both conditions can have an impact on spermatogenesis and impair male reproductive function. Based on previous studies, transgenerational epigenetic inheritance through gametes was observed in obesity. Results Our results showed that obese mice had decreased blood iron levels (p < 0.01), lower protein and mRNA expression for duodenal DMT1 (p < 0.05), but no statistically significant variation in mRNA expression for duodenal FPN (p > 0.05); there was an increase in sperm miR-135b expression (p < 0.05). Bioinformatics revealed ninety overlapping genes and further analysis showed that they were primarily responsible for epithelial cilium movement, fatty acid beta-oxidation, protein dephosphorylation, fertilization and glutamine transport, which are closely related to spermatogenesis, sperm development and sperm viability in mice. Conclusions In conclusion, this study demonstrated that high-fat diet impairs male fertility by disrupting DMT1 and miR-135b in the gut-testis axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.