This review focuses on the toxicity and metabolism of T-2 toxin and analytical methods used for the determination of T-2 toxin. Among the naturally occurring trichothecenes in food and feed, T-2 toxin is a cytotoxic fungal secondary metabolite produced by various species of Fusarium. Following ingestion, T-2 toxin causes acute and chronic toxicity and induces apoptosis in the immune system and fetal tissues. T-2 toxin is usually metabolized and eliminated after ingestion, yielding more than 20 metabolites. Consequently, there is a possibility of human consumption of animal products contaminated with T-2 toxin and its metabolites. Several methods for the determination of T-2 toxin based on traditional chromatographic, immunoassay, or mass spectroscopy techniques are described. This review will contribute to a better understanding of T-2 toxin exposure in animals and humans and T-2 toxin metabolism, toxicity, and analytical methods, which may be useful in risk assessment and control of T-2 toxin exposure.
The unique structure of a vertically aligned carbon nanotube (VACNT) array makes it behave most similarly to a blackbody. It is reported that the optical absorptivity of an extremely black VACNT array is about 0.98-0.99 over a large spectral range of 200 nm-200 μm, inspiring us to explore the performance of VACNT arrays in solar energy harvesting. In this work, we report the highly efficient steam generation simply by laminating a layer of VACNT array on the surface of water to harvest solar energy. It is found that under solar illumination the temperature of upper water can significantly increase with obvious water steam generated, indicating the efficient solar energy harvesting and local temperature rise by the thin layer of VACNTs. We found that the evaporation rate of water assisted by VACNT arrays is 10 times that of bare water, which is the highest ratio for solar-thermal-steam generation ever reported. Remarkably, the solar thermal conversion efficiency reached 90%. The excellent performance could be ascribed to the strong optical absorption and local temperature rise induced by the VACNT layer, as well as the ultrafast water transport through the VACNT layer due to the frictionless wall of CNTs. Based on the above, we further demonstrated the application of VACNT arrays in solar-driven desalination.
We discuss how the stain left after evaporation of a suspension evolves with heating of the glass or plastic on which the liquid has been deposited. Upon increasing the substrate temperature, it is found that the stain gradually changes from the usually observed ring to an "eye" shape, that is, a combination of the thick central stain and the thin outer ring. Both the size and the relative volume of the central stain increase with the substrate temperature. The main mechanism for this phenomenon is proposed to be an enhanced Marangoni recirculation flow on hot substrates. These findings can be exploited to continuously tune the morphology of coffee stains, with potential applications in self-assembly and ink-jet printing.
Droplets can self-propel when immersed in another liquid in which a concentration gradient is present. Here we report the experimental and numerical study of a self-propelling oil droplet in a vertically stratified ethanol/water mixture: At first, the droplet sinks slowly due to gravity, but then, before having reached its density matched position, jumps up suddenly. More remarkably, the droplet bounces repeatedly with an ever increasing jumping distance, until all of a sudden it stops after about 30 min. We identify the Marangoni stress at the droplet/liquid interface as responsible for the jumping: its strength grows exponentially because it pulls down ethanol-rich liquid, which in turn increases its strength even more. The jumping process can repeat because gravity restores the system. Finally, the sudden death of the jumping droplet is also explained. Our findings have demonstrated a type of prominent droplet bouncing inside a continuous medium with no wall or sharp interface.
Superrepellency is an extreme situation where liquids stay at the tops of rough surfaces, in the so-called Cassie state. Owing to the dramatic reduction of solid/liquid contact, such states lead to many applications, such as antifouling, droplet manipulation, hydrodynamic slip, and self-cleaning. However, superrepellency is often destroyed by impalement transitions triggered by environmental disturbances whereas inverse transitions are not observed without energy input. Here we show through controlled experiments the existence of a "monostable" region in the phase space of surface chemistry and roughness, where transitions from Cassie to (impaled) Wenzel states become spontaneously reversible. We establish the condition for observing monostability, which might guide further design and engineering of robust superrepellent materials.repellency | Cassie state | monostability | interfaces | dewetting W ater repellency describes the ability of materials to repel water and make it flow with negligible friction and adhesion, compared with usual situations. It is achieved by combining chemical hydrophobicity with micro-and/or nanotextures (1, 2). Water meeting such materials remains at the textures' tops, which generates a composite interface made of hydrophobic solid and air trapped inside the textures (Cassie state) (3). As a consequence, water hardly contacts these solids on which its dynamical behaviors are spectacular (4-7). Repellency also holds if the liquid has a higher surface tension than water (salty water, mercury); using special texture designs, it can even be extended to liquids with smaller surface tension (8), and/or to water at small scale (such as dew) (9, 10), so it was proposed (11) to call such materials "superhygrophobic," from the Greek "hygros" meaning humid.Repellent materials are classically found in nature, in particular at the surface of many plants and insects, two situations where the control of water is crucial for surviving (1, 12). It was reported that these natural surfaces often (yet not always) exhibit dual structures, with microbumps on the scale of 10-100 μm coated by nanostructures of typically 100 nm (1). This results in an amplification of static (13-17) and dynamical (18) repellency, because we can then expect the generation of composite solid/air interfaces at different scales--where we mean by amplification an improved nonwettability (13-15, 17) and a smaller adhesion (16,18,19), two factors that contribute to the liquid mobility.This field of research has been very active for about 20 years, with theoretical, experimental, and computational viewpoints. Researchers discussed the surface energy of materials having different kinds of structures (20-23), various adhesion properties (24-26), diverse geometries of solid-liquid-vapor contact lines (27, 28), or flow interactions between the liquid and its substrate (29-32). In many studies, model hydrophobic textures (such as lines or pillars) were considered, and wetting was found to be usually "bistable": Depending on the history o...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.