Long noncoding RNAs (lncRNAs) are emerging as important regulators in cellular processes, including the development, proliferation, and migration of cancer cells. We have demonstrated in a prior study that small nucleolar RNA host gene 5 (SNHG5) is dysregulated in gastric cancer (GC). To further explore the underlying mechanisms of SNGH5 function in the development of GC, in this study, we screened the microRNAs interacting with SNHG5 and elucidated their roles in GC. We showed that SNHG5 contains a putative miR-32-binding site and that deletion of this site abolishes the responsiveness to miR-32. Suppression of SNHG5 expression by miR-32 was found to be Argonaute (Ago)2-dependent. Immunoprecipitation showed that SNHG5 could be pulled down from the Ago-2 complex with miR-32. Furthermore, it was reported that Kruppel-like factor 4 (KLF4) is a target gene of miR-32. In agreement with SNHG5 being a decoy for miR-32, we showed that KLF4 suppression by miR-32 could be partially rescued by SNHG5 overexpression, whereas miR-32 mimic rescued SNHG5 overexpression-mediated suppression of GC cell migration. In addition, we identified a negative correlation between the expression of SNHG5 and miR-32 in GC tissues. Furthermore, KLF4 expression was significantly downregulated in GC specimens, and a negative correlation between miR-32 and KLF4 expression and a positive correlation between KLF4 and SNHG5 expression levels were detected. Overall, this study demonstrated, for the first time, that the SNHG5/miR-32/KLF4 axis functions as an important player in GC cell migration and potentially contributes to the improvement of GC diagnosis and therapy.-Zhao, L., Han, T., Li, Y., Sun, J., Zhang, S., Liu, Y., Shan, B., Zheng D., Shi, J. The lncRNA SNHG5/miR-32 axis regulates gastric cancer cell proliferation and migration by targeting KLF4.
In response to microenvironmental signals, macrophages undergo different types of activation, including the “classic” pro-inflammatory phenotype (also called M1) and the “alternative” anti-inflammatory phenotype (also called M2). Macrophage polarized activation has profound effects on immune and inflammatory responses, but mechanisms underlying the various types of macrophage is still in its infancy. In this study, we reported that M1-type stimulation could down-regulate miR-23a/27a/24-2 cluster transcription through the binding of NF-κB to this cluster's promoter and that miR-23a in turn activated the NF-κB pathway by targeting A20 and thus promoted the production of pro-inflammatory cytokines. Furthermore, STAT6 occupied the miR-23a/27a/24-2 cluster promoter and activated their transcription in IL-4-stimulated macrophages. In addition, miR-23a in turn suppressed the JAK1/STAT-6 pathway and reduced the production of M2 type cytokines by targeting JAK1 and STAT-6 directly, while miR-27a showed the same phenotype by targeting IRF4 and PPAR-γ. The miR-23a/27a/24-2 cluster was shown to be significantly decreased in TAMs of breast cancer patients, and macrophages overexpressing the miR-23a/27a/24-2 cluster inhibited tumor growth in vivo. Taken together, these data integrated microRNA expression and function into macrophage polarization networks and identified a double feedback loop consisting of the miR-23a/27a/24-2 cluster and the key regulators of the M1 and M2 macrophage polarization pathway. Moreover, miR-23a/27a/24-2 regulates the polarization of tumor-associated macrophages and thus promotes cancer progression.
Tumor-associated macrophages (TAMs) play critical roles in promoting tumor progression and invasion. However, the molecular mechanisms underlying TAM regulation remain to be further investigated and may make significant contributions to cancer treatment. Mammalian microRNAs (miRNAs) have recently been identified as important regulators of gene expression that function by repressing specific target genes mainly at the post-transcriptional level. However, systematic studies of the functions and mechanisms of miRNAs in TAMs in tumor tissues are rare. In this study, miR-146a and miR-222 were shown to be significantly decreased in TAMs associated with the up-regulated NF-κB p50 subunit. miR-146a promoted the expression of some M2 macrophage phenotype molecules, and miR-146a antagomir transfected RAW264.7 monocyte-macrophage cells inhibited 4T1 tumor growth in vivo. Meanwhile, overexpression of miR-222 inhibited TAM chemotaxis, and miR-222 in TAMs inhibited 4T1 tumor growth by targeting CXCL12 and inhibiting CXCR4. These data revealed that miRNAs influence breast tumor growth by promoting the M2 type polarization or regulating the recruitment of TAMs. These observations suggest that endogenous miRNAs may exert an important role in controlling the polarization and function of TAMs in breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.