Anthraquinone dye represents an important group of recalcitrant pollutants in dye wastewater. Aspergillus sp XJ-2 CGMCC12963 showed broad-spectrum decolorization ability, which could efficiently decolorize and degrade various anthraquinone dyes (50 mg L ¡1 ) under microaerophilic condition. And the decolorization rate of 93.3% was achieved at 120 h with Disperse Blue 2BLN (the target dye). Intermediates of degradation were detected by FTIR and GC-MS, which revealed the cleavage of anthraquinone chromophoric group and partial mineralization of target dye. In addition, extracellular manganese peroxidase showed the most closely related to the increasing of decolorization rate and biomass among intracellular and extracellular ligninolytic enzymes. Given these results, 2 possible degraded pathways of target dye by Aspergillus sp XJ-2 CGMCC12963 were proposed first in this work. The degradation of Disperse Blue 2BLN and broad spectrum decolorization ability provided the potential for Aspergillus sp XJ-2 CGMCC12963 in the treatment of wastewater containing anthraquinone dyes.
In this report, the decolorization features of extracellular enzymes and mycelia separately prepared from Aspergillus sp. TS-A CGMCC 12,964 (120 h) were investigated. The fermentation broth of TS-A degraded 98.6% of Mordant Yellow 1 (50 mg/L) at an initial pH 6 within 1 h with over 70% of the dye (50 mg/L) degraded by extracellular enzymes and 18.8% removed by live mycelia. The degradation products of the dye were analyzed by UV-Vis and FTIR spectra. The decolorization rates of extracellular enzymes and mycelia were examined under different contact periods, dye concentrations and pH values. The extracellular enzymes exhibited excellent degradation activity under weak acidic conditions. In addition, biosorption models of mycelia fitted well the Langmuir isotherm model and the pseudo-second-order kinetic equation. Although the decolorization process was achieved through the synergistic effects of mycelia and extracellular enzymes, decolorization was dominated by the biodegradation activity of the extracellular enzymes from TS-A.
Ligninolytic enzymes, including laccase (Lac), manganese peroxidase (MnP) and lignin peroxidase (LiP), have attracted much attention in the degradation of contaminants. Genes of Lac (1827 bp), MnP (1134 bp) and LiP (1119 bp) were cloned from
Aspergillus
sp. TS-A, and the recombinant Lac (69 kDa), MnP (45 kDa) and LiP (35 kDa) were secretory expressed in
Pichia pastoris
GS115, with enzyme activities of 34, 135.12 and 103.13 U l
−1
, respectively. Dyes of different structures were treated via the recombinant ligninolytic enzymes under the optimal degradation conditions, and the result showed that the decolourization rate of Lac on Congo red (CR) in 5 s was 45.5%. Fourier-transform infrared spectroscopy, gas chromatography–mass spectrometry analysis and toxicity tests further proved that the ligninolytic enzymes could destroy the dyes, both those with one or more azo bonds, and the degradation products were non-toxic. Moreover, the combined ligninolytic enzymes could degrade CR more completely compared with the individual enzyme. Remarkably, besides azo dyes, ligninolytic enzymes could also degrade triphenylmethane and anthracene dyes. This suggests that ligninolytic enzymes from
Aspergillus
sp. TS-A have the potential for application in the treatment of contaminants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.