This study explores the associations between crash/near-crash (C/NC) events and roadway, driver-related, and environmental factors in naturalistic driving studies (NDS). We used the Naturalistic Engagement in Secondary Tasks (NEST) dataset, which is massive and detailed and contains 50 million miles of naturalistic driving data resulting from the Strategic Highway Research Program 2 (SHRP2). Association rule mining (ARM) is applied to extract the rules for frequently occurring events. The generated association rules are filtered by four metrics (support, confidence, lift, and conviction) and validated by the lift increase criterion. A three-step analysis is performed to obtain a comprehensive understanding of the rules of C/NC events. The 20 most frequent items are first selected to investigate their relationship with the C/NC events. Subsequently, the association rules are used to identify the factors contributing to C/NC events. Finally, correlations between contributing factors and different severities of crashes (I—most severe, II—police-reportable, III—minor crash, and IV—low-risk tire strike) are analyzed by ARM. The results demonstrate that C/NC events occur most frequently on straight and level road segments with no controlled intersections or traffic control devices when drivers are performing secondary tasks. Thus, the reasons for these crashes are carelessness and overconfidence. In addition, a median strip or barrier and a wider road can significantly reduce the frequency and severity of crash events. Moreover, gender, age, average annual mileage, and secondary tasks are highly correlated with the frequency and severity of C/NC events. Drivers with visual-spatial disabilities or crash records are more likely to be involved in the most severe crash events. Near-crash events occur more frequently at higher traffic density and on roads with traffic control devices and controlled intersections. These conditions may keep drivers alert, preventing crashes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.