Collaborative robots are expected to work alongside humans and directly replace human workers in some cases, thus effectively responding to rapid changes in assembly lines. Current methods for programming contact-rich tasks, particularly in heavily constrained spaces, tend to be fairly inefficient. Therefore, faster and more intuitive approaches are urgently required for robot teaching. This study focuses on combining visual servoing-based learning from demonstration (LfD) and force-based learning by exploration (LbE) to enable the fast and intuitive programming of contact-rich tasks with minimal user efforts. Two learning approaches were developed and integrated into a framework, one relying on human-torobot motion mapping (visual servoing approach) and the other relying on force-based reinforcement learning. The developed framework implements the noncontact demonstration teaching method based on the visual servoing approach and optimizes the demonstrated robot target positions according to the detected contact state. The developed framework is compared with two most commonly used baseline techniques, i.e., teach pendantbased teaching and hand-guiding teaching. Furthermore, the efficiency and reliability of the framework are validated via comparison experiments involving the teaching and execution of contact-rich tasks. The proposed framework shows the best performance in terms of the teaching time, execution success rate, risk of damage, and ease of use.
This article describes a MgCl2-supported Ziegler-Natta catalyst for propylene polymerization prepared via an in situ emulsion technique with new surfactants. The effect of preparation conditions such as the TiCl4/toluene molar ratio, TiCl4-contacting temperature, amount of phthaloyl dichloride, stirring rate, mixing time of TiCl4/toluene with the Mg complex, and the n-butyl chloride loading was investigated in detail. Scanning electron microscopy and laser particle size analyzer measurements showed that the catalyst particles exhibit a perfectly spherical shape, narrow particle size distribution, and low fine powder content. Energy-dispersive X-ray spectrometry indicated that the Ti, Mg, and Cl elements were evenly distributed throughout the particles. Powder X-ray diffraction measurements indicated the presence of δ-MgCl2 in the catalyst, and FTIR and GC-MS studies confirmed the presence of in situ formed di(ethylhexyl)phthalate (DEHP). Bulk polymerization of propylene using the catalyst was studied, and it was found that the catalyst displayed high activity, high bulk density with high stereospecificity, and excellent hydrogen sensitivity. The polymer produced by the catalyst has a narrow particle size distribution with a low fine powder content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.