Useful methodology is described for the synthesis of dehydroalanine residues (II) within peptides. The unnatural amino acid (Se)-phenylselenocysteine (I) can be incorporated into growing peptide chains via standard peptide synthesis procedures. Subsequent oxidative elimination affords a dehydroalanine at the desired position. The oxidation conditions are mild and tolerate functionalities commonly found in peptides, including variously protected cysteine residues. To illustrate its utility, cyclic lanthionines have been synthesized by this method.
[reaction: see text]. Protein and peptide conjugates such as glycopeptides, prenylated peptides, and lipopeptides play essential roles in biology. A rapid and convergent entry into a variety of these compounds is described. The methodology involves the introduction of a dehydroalanine into peptides and subsequent chemoselective conjugate addition of an appropriate thiolate nucleophile, including farnesylthiolate or thioglycosides.
Selenocysteine derivatives are useful precursors for the synthesis of peptide conjugates and selenopeptides. Several diastereomers of Fmoc-3-methyl-Se-phenylselenocysteine (FmocMeSec(Ph)) were prepared and used in solid phase peptide synthesis (SPPS). Once incorporated into peptides, the phenylselenide functionality provides a useful handle for the site and stereospecific introduction of E- or Z-dehydrobutyrine residues into peptide chains via oxidative elimination. The oxidation conditions are mild, can be performed on a solid support, and tolerate functionalities commonly found in peptides, including variously protected cysteine residues. Dehydropeptides containing unprotected cysteine residues undergo intramolecular stereoselective conjugate addition to afford cyclic lanthionines and methyllanthionines, which have the same stereochemistry as found in lantibiotics, a family of ribosomally synthesized and post-translationally modified peptide antibiotics. The observed stereoselectivity is shown to originate from a kinetic rather than a thermodynamic preference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.