We report a 3.5-angstrom-resolution cryo–electron microscopy structure of a respiratory supercomplex isolated fromMycobacterium smegmatis.It comprises a complex III dimer flanked on either side by individual complex IV subunits. Complex III and IV associate so that electrons can be transferred from quinol in complex III to the oxygen reduction center in complex IV by way of a bridging cytochrome subunit. We observed a superoxide dismutase-like subunit at the periplasmic face, which may be responsible for detoxification of superoxide formed by complex III. The structure reveals features of an established drug target and provides a foundation for the development of treatments for human tuberculosis.
Quaking (QKI) is an alternative splicing factor that can regulate circRNA formation in the progression of epithelialmesenchymal transition, but the mechanism remains unclear. High expression of QKI is correlated with short survival time, metastasis, and high clinical stage and pathology grade in hepatocellular carcinoma (HCC). Here we report that transcription of the QKI gene was activated by the Yin-Yang 1 (YY1)/p65/p300 complex, in which YY1 bound to the superenhancer and promoter of QKI, p65 combined with the promoter, and p300 served as a mediator to maintain the stability of the complex. This YY1/p65/p300 complex increased QKI expression to promote the malignancy of HCC as well as an increased circRNA formation in vitro and in vivo. Hyperoside is one of several plant-derived flavonol glycoside compounds. Through virtual screening and antitumor activity analysis, we found that hyperoside inhibited QKI expression by targeting the YY1/p65/p300 complex. Overall, our study suggests that the regulatory mechanism of QKI depends on the YY1/p65/p300 complex and that it may serve as a potential target for treatment of HCC. Significance: These findings identify the YY1/p65/p300 complex as a regulator of QKI expression, identifying several potential therapeutic targets for the treatment of HCC.
Background Anti-angiogenic therapies demonstrate anti-tumor effects by decreasing blood supply to tumors and inhibiting tumor growth. However, anti-angiogenic therapy may leads to changes in tumor microenvironment and increased invasiveness of tumor cells, which in turn promotes distant metastasis and increased drug resistance. Methods The CO-IP assays, N-STORM and cytoskeleton analysis were used to confirm the mechanism that p-VEGFR2/VE-cadherin/β-catenin/actin complex regulates vascular remodeling and improves the tumor microenvironment. 6-gingerol (6G), the major bioactive component in ginger, stabilized this complex by enhancing the binding of VEGFa to VEGFR2 with non-pathway dependent. Biacore, pull down and molecular docking were employed to confirm the interaction between 6G and VEGFR2 and enhancement of VEGFa binding to VEGFR2. Results Here, we report that microvascular structural entropy (MSE) may be a prognostic factor in several tumor types and have potential as a biomarker in the clinic. 6G regulates the structural organization of the microvascular bed to decrease MSE via the p-VEGFR2/VE-cadherin/β-catenin/actin complex and inhibit tumor progression. 6G promotes the normalization of tumor vessels, improves the tumor microenvironment and decreases MSE, facilitating the delivery of chemotherapeutic agents into the tumor core and thereby reducing tumor growth and metastasis. Conclusions This study demonstrated the importance of vascular normalization in tumor therapy and elucidated the mechanism of action of ginger, a medicinal compound that has been used in China since ancient times. Electronic supplementary material The online version of this article (10.1186/s13046-019-1291-z) contains supplementary material, which is available to authorized users.
Encapsulins containing dye-decolorizing peroxidase (DyP)-type peroxidases are ubiquitous among prokaryotes, protecting cells against oxidative stress. However, little is known about how they interact and function. Here, we have isolated a native cargo-packaging encapsulin from Mycobacterium smegmatis and determined its complete high-resolution structure by cryogenic electron microscopy (cryo-EM). This encapsulin comprises an icosahedral shell and a dodecameric DyP cargo. The dodecameric DyP consists of two hexamers with a twofold axis of symmetry and stretches across the interior of the encapsulin. Our results reveal that the encapsulin shell plays a role in stabilizing the dodecameric DyP. Furthermore, we have proposed a potential mechanism for removing the hydrogen peroxide based on the structural features. Our study also suggests that the DyP is the primary cargo protein of mycobacterial encapsulins and is a potential target for antituberculosis drug discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.