BackgroundOsteosarcoma (OS) is the most common primary malignant bone tumors in children and adolescents. Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) is a key gene in mediating the formation of the stabilized collagen cross-link, playing an important role in the progression of cancer. However, the interaction between OS and PLOD2 has not been clarified so far.MethodsThe target gene PLOD2 was screened through our own RNA-seq results and other two RNA-seq results from GEO database. The expression of PLOD2 in OS was detected by RT-qPCR, Western blot and immunohistochemistry. Functional experiments were performed to investigate the role of PLOD2 in OS cell invasion, migration and angiogenesis in vitro. An OS lung metastasis model was established to investigate the function of PLOD2 in OS metastasis and angiogenesis in vivo. The role of PLOD2 in immune infiltration in OS was explored by KEGG/GO analysis and immune infiltration analysis with TARGET, TCGA and TIMER.ResultsPLOD2 was high-expressed in OS, which was related to poor prognosis of OS patients. PLOD2 promoted OS cell migration, invasion and angiogenesis in vitro and aggravated OS metastasis and angiogenesis in vivo. Bioinformatic analysis showed that PLOD2 played an important role in immune cell infiltration in OS, including CD8 positive T cells, macrophages M0 cells, DC cells, endothelial cells, iDC cells, ly endothelial cells, MEP cells, mv endothelial cells, native B cells, smooth muscle cells and Th1 cells. Immunohistochemical results showed that the expression of CD4 and CD8A was negatively correlated with the expression of PLOD2 in OS.ConclusionPLOD2 was high-expressed in OS and promoted OS migration, invasion and angiogenesis in vitro and facilitated OS metastasis and angiogenesis in vivo. PLOD2 was associated with immune cell infiltration in OS, which could be a promising target to treat OS patients with metastasis and utilized to guide clinical immunotherapy in the future.
Background Osteosarcoma (OS) is the most common primary malignant bone tumors in children and adolescents. Large numbers of studies have focused on the long non-coding RNA (lncRNA) that plays essential roles in the progression of osteosarcoma. Nevertheless, the functions and underlying mechanisms of LncRNA NDRG1 in osteosarcoma remain unknown. Methods Differentially expressed lncRNAs between osteosarcoma and adjacent normal tissues were identified through RNA sequencing. The role of LncRNA NDRG1 in osteosarcoma proliferation and metastasis were investigated through in vitro and in vivo functional experiments. The interaction between LncRNA NDRG1 and miR-96-5p was verified through bioinformatic analysis and luciferase reporter assay. Regulation relationship between LncRNA NDRG1 and miR-96-5p was further evaluated by the rescue experiments. Additionally, the changes in the expression of epithelial-mesenchymal transition (EMT) and the PI3K/AKT pathway were verified by Western blot. Results LncRNA NDRG1 was up-regulated in osteosarcoma cell lines and tissues and the expression of LncRNA NDRG1 was correlated with the overall survival of osteosarcoma patients. Functional experiments exhibited that LncRNA NDRG1 aggravated osteosarcoma proliferation and migration in vitro; meanwhile, animals experiments showed that LncRNA NDRG1 promoted osteosarcoma growth and metastasis in vivo. Mechanistically, LncRNA NDRG1 was found to aggravate osteosarcoma progression and regulate the PI3K/AKT pathway by sponging miR-96-5p. Conclusions LncRNA NDRG1 aggravates osteosarcoma progression and regulates the PI3K/AKT pathway by sponging miR-96-5p. Therefore, LncRNA NDRG1 could act as a prognostic marker and a therapeutic target for osteosarcoma in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.