The identification of cancer subtypes can help researchers understand hidden genomic mechanisms, enhance diagnostic accuracy and improve clinical treatments. With the development of high-throughput techniques, researchers can access large amounts of data from multiple sources. Because of the high dimensionality and complexity of multiomics and clinical data, research into the integration of multiomics data is needed, and developing effective tools for such purposes remains a challenge for researchers. In this work, we proposed an entirely unsupervised clustering method without harnessing any prior knowledge (MODEC). We used manifold optimization and deep-learning techniques to integrate multiomics data for the identification of cancer subtypes and the analysis of significant clinical variables. Since there is nonlinearity in the gene-level datasets, we used manifold optimization methodology to extract essential information from the original omics data to obtain a low-dimensional latent subspace. Then, MODEC uses a deep learning-based clustering module to iteratively define cluster centroids and assign cluster labels to each sample by minimizing the Kullback–Leibler divergence loss. MODEC was applied to six public cancer datasets from The Cancer Genome Atlas database and outperformed eight competing methods in terms of the accuracy and reliability of the subtyping results. MODEC was extremely competitive in the identification of survival patterns and significant clinical features, which could help doctors monitor disease progression and provide more suitable treatment strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.