To investigate head-brain injuries caused by windshield impact on riders using electric self-balancing scooters (ESS). Numerical vehicle ESS crash scenarios are constructed by combining the finite element (FE) vehicle model and multibody scooter/rider models. Impact kinematic postures of the head-windshield contact under various impact conditions are captured. Then, the processes during head-windshield contact are reconstructed using validated FE head/laminated windshield models to assess the severity of brain injury caused by the head-windshield contact. Governing factors, such as vehicle speed, ESS speed, and the initial orientation of ESS rider, have nontrivial influences over the severity of a rider's brain injuries. Results also show positive correlations between vehicle speed and head-windshield impact speeds (linear and angular). Meanwhile, the time of head-windshield contact happens earlier when the vehicle speed is faster. According to the intensive study, windshield-head contact speed (linear and angular), impact location on the windshield, and head collision area are found to be direct factors on ESS riders' brain injuries during an impact. The von Mises stress and shear stress rise when relative contact speed of head-windshield increases. Brain injury indices vary widely when the head impacting the windshield from center to the edge or impacting with different areas.
PVB laminated glass is a kind of typical laminated composite material and its crack characteristics are of great interest to vehicle manufacturers, safety engineers, and accident investigators. Because crack morphology on laminated windshield contains important information on energy mitigation, pedestrian protection, and accident reconstruction. In this chapter, we investigated the propagation characteristics for both radial and circular cracks in PVB laminated glasses by theoretical constitutive equations analysis, numerical simulation, experiments, and tests of impact. A damage-modified nonlinear viscoelastic constitutive relations model of PVB laminated glass were developed and implemented into FEA software to simulate the pedestrian head impact with vehicle windshield. Results showed that shear stress, compressive stress, and tensile stress were main causes of plastic deformation, radial cracks, and circumferential cracks for the laminated glass subject to impactor. In addition, the extended finite element method (XFEM) was adopted to study the multiple crack propagation in brittle plates. The effects of various impact conditions and sensitivity to initial flaw were discussed. For experiment analysis, crack branching was investigated and an explicit expression describing the crack velocity and number of crack branching is proposed under quasi-static Split Hopkinson Pressure Bar (SHPB)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.