Three-dimensional laser scanning technology can comprehensively and accurately monitor slope deformation. To conduct deformation monitoring and stability evaluation of the Changzhou Shunguoshan landslide, in this paper, the causes of the Changzhou Shunguoshan landslide were analyzed. Consequently, 3D laser scanning technology and the traditional monitoring methods such as data from the total station were compared. The point cloud data provides big data support for landslide deformation monitoring and landslide stability early warning. Meanwhile, the landslide stability was evaluated by analogy with existing studies on slope deformation monitoring data. Results show that the three-dimensional laser scanning monitoring data is similar to the total station monitoring data. The overall deformation of the Shunguoshan landslide is no more than ± 0.0015 m; the deformation of the Liyang slope is less than ±0.09 m, which is far less than the analog slope deformation monitoring data. The slope construction and monitoring process are in a stable state.
Globalization is bringing increased industrialization and municipal solid waste (MSW). This is a major concern in heavily populated areas. In order to reduce MSW generation, incineration is commonly used, resulting in two types of ashes: bottom and fly ash. Bottom ash is gathered at the incineration bed and is larger in mass than fly ash. To test the qualities of high-performance mortar, MSW-BA in three sizes (fine, medium, and coarse) was replaced with sand at three replacement levels of 10%, 20%, and 30%. The high-performance mortar integrating MSW-BA was tested for hardened density, mechanical properties such as compressive and flexural strength, resistance to NaOH solution, and heavy metal leaching. The substitution level of MSW-BA increased the hardened density of the mortar mixes. The volume change and residual strength of the mortar mixes were measured following exposure to the NaOH solution. Fine-particle mortar mixes shrank whereas medium- and coarse-particle mortar mixes expanded. The largest loss in flexural and compressive strength was recorded when 20% of sand was replaced with a fine fraction of MSW-BA. Heavy metals including cadmium and copper were not leached from MSW-BA combinations of any size. The minuscule amounts of lead and zinc discovered were well below acceptable limits. The present study illustrates the MSW-BA can be utilized as a substitute for sand in the development of high-performance mortar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.