Wind energy is a type of renewable and clean energy which has attracted more and more attention all over the world. The Northwest China is a region with the most abundant wind energy not only in China, but also in the whole world. To achieve the goal of carbon neutralization, there is an urgent need to make full use of wind energy in Northwest China and to improve the efficiency of wind power generation systems in this region. As forecast accuracy of the near-surface wind is crucial to wind-generated electricity efficiency, improving the near-surface wind forecast is of great importance. This study conducted the first test to incorporate the subgrid surface drag into the near-surface wind forecast under the complex terrain conditions over Northwest China by using two TopoWind models added by newer versions of the Weather Research and Forecasting (WRF) model. Based on three groups (each group had 28 runs) of forecasts (i.e., Control run, Test 01 and Test 02) started at 12:00 UTC of each day (ran for 48 h) during the period of 1–28 October 2020, it was shown that, overall, both TopoWind models could improve the near-surface wind speed forecasts under the complex terrain conditions over Northwest China, particularly for reducing the errors associated with the forecast of the wind-speed’s magnitude. In addition to wind forecast, the forecasts of sea level pressure and 2-m temperature were also improved. Different geographical features (wind-farm stations located south of the mountain tended to have more accurate forecast) and weather systems were found to be crucial to forecast accuracy. Good forecasts tended to appear when the simulation domain was mainly controlled by the high-pressure systems with the upper-level jet far from it.
The abnormal 2020 Meiyu season caused the worst disasters over the Yangtze River Valley in recent decades. Of these, the Sichuan Basin (SCB) and its surrounding regions were one of the most severely affected areas. Disastrous weather frequently occurs in these regions, with a large proportion of it closely related to the southwest vortices (SWVs). In order to further the understanding of SWV generation, this study investigated the formation mechanisms of a quasi-stationary SWV (by using two sets of vorticity budgets), which caused torrential rainfall (resulting in flash floods in Sichuan and Chongqing), lightning activities (causing tripping incidents of transmission lines in Sichuan) and strong winds (leading to shutting down of wind turbines in Hubei). Results showed that the SWV was generated in a favorable background environment, during which an upper-tropospheric divergence and a middle-tropospheric warm advection appeared over the SCB. Trajectory analyses and vorticity budget showed that the air particles that came from the lower troposphere of the regions south of the Tibetan Plateau dominated the SWV formation. These air particles experienced notable ascending during which an increase in their cyclonic vorticity occurred mainly due to convergence-related stretching, whereas, tilting mainly decelerated this increase. The air particles sourced from the areas within the key region of the SWV and areas northeast of the key region were the second dominant factor for the vortex formation. Overall, for the air particles that formed the SWV, their most rapid changes of vorticity and divergence appeared in the period 24 h before SWV formation, implying that this was the critical period for the SWV generation.
As the power generation mode with the lowest carbon emissions, wind power generation plays an indispensable role in achieving the goal of carbon neutralization. To optimize the wind power density (WPD), forecasting is crucial to improve wind power utilization and power system stability. However, because near-surface wind is characterized by notable randomness, diversity, intermittence, and uncontrollability, accurately forecasting the WPD on wind farms remains a challenging task. In this study, we attempted to improve the WPD forecast in the middle- and high-latitude regions of China (wind energy resources are abundant there) by selecting the relatively optimal planetary boundary layer (PBL) scheme, as the PBL processes exert notable effects on the near-surface wind field directly. Based on a whole month in the summer (July 2021), seven PBL schemes were compared quantitatively by using the Weather Research and Forecasting (WRF) model for a total of 70 runs (for each run, the forecast period was 3 days). The results show that no PBL schemes could always show the best performance in forecasting all variables, and the forecast accuracy showed a notable dependence on the evolution of the weather systems. Among the seven PBL schemes, the Medium-Range Forecast (MRF) scheme showed the overall best performance in forecasting the 100 m wind speed, sea level pressure, and 2 m temperature, which ensured that it had the highest forecast skill for the WPD in the middle- and high-latitude regions of China. Further analyses indicate that the background conditions were also well forecasted by the MRF scheme (ranked first or second). This was a crucial reason why the WPD forecast was the best for the MRF scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.