Closed-loop MIMO technique standardized in LTE can support different layer transmissions through precoding operation to match the channel multiplexing capability. However, the performance of the limited size codebook still needs to be evaluated in real channel environment for further insights. Based on the wideband MIMO channel measurement in a typical indoor scenario, capacity loss (CL) of the limited size codebook relative to perfect precoding is studied first in two extreme channel conditions. The results show that current codebook design for single layer transmission is nearly capacity lossless, and the CL will increase with the number of transmitted layers. Furthermore, the capacity improvement of better codebook selection criterions is very limited compared to CL. Then we define the maximum capacity boost achieved by frequency domain layer adaption (FDLA) and investigate its sensitivity to SNR and channel condition. To survey the effect of frequency domain channel variation on MIMO-OFDM system, we define a function to measure the fluctuation levels of the key channel metrics within a subband and reveal the inherent relationship between them. Finally, a capacity floor resulted as the feedback interval increases in frequency domain.
The analog to information converter (AIC) based on compressed sensing (CS) is designed to sample the analog signals at a sub-Nyquist sampling rate. In this paper, we propose a novel parallel multi-rate compressed sampling (PMCS) system. It has several parallel paths and each path has several low-speed analog-to-digital converters (ADCs). This system has simple structure and low sampling rate, which makes it easy to be implemented on hardware. Simulation results show that signals can be reconstructed in high probability even though the sampling rate is much lower than the Nyquist sampling rate.
With the advent of Multi Input Multi Output (MIMO) systems, the system performance is highly dependent on the accurate representation of the channel condition that causes the wireless channel emulation to become increasingly important. The conventional Finite Impulse Response (FIR) based emulator has a high real-time but the complexity rapidly becomes impractical for larger array sizes. However, the frequency domain approach can avoid this problem and reduce the complexity for higher order arrays. The complexity comparison between in time domain and in frequency domain is made in this paper. The Fast Fourier Transform (FFT) as an important component of signal processing in frequency domain is briefly introduced and an FGPA system architecture based on CORDIC algorithm is proposed. The full design is implemented in Xilinx's Virtex-5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.