In order to shorten the long-term image acquisition time of the terahertz time domain spectroscopy imaging system while ensuring the imaging quality, a hybrid sparsity model (HSM) is proposed for fast terahertz imaging in this paper, which incorporates both intrinsic sparsity prior and nonlocal self-similarity constraints in a unified statistical model. In HSM, a weighted exponentiation shift-invariant wavelet transform is introduced to enhance the sparsity of the terahertz image. Simultaneously, the nonlocal self-similarity by means of the three-dimensional sparsity in the transform domain is exploited to ensure high-quality terahertz image reconstruction. Finally, a new split Bregman-based iteration algorithm is developed to solve the terahertz imaging model more efficiently. Experiments are presented to verify the effectiveness of the proposed approach.
In order to solve the problems of long-term image acquisition time and massive data processing in a terahertz time domain spectroscopy imaging system, a novel fast terahertz imaging model, combined with group sparsity and nonlocal self-similarity (GSNS), is proposed in this paper. In GSNS, the structure similarity and sparsity of image patches in both two-dimensional and three-dimensional space are utilized to obtain high-quality terahertz images. It has the advantages of detail clarity and edge preservation. Furthermore, to overcome the high computational costs of matrix inversion in traditional split Bregman iteration, an acceleration scheme based on conjugate gradient method is proposed to solve the terahertz imaging model more efficiently. Experiments results demonstrate that the proposed approach can lead to better terahertz image reconstruction performance at low sampling rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.