Hepatitis B virus infections have always been associated with high levels of mortality. In 2019, hepatitis B virus (HBV)-related diseases resulted in approximately 555,000 deaths globally. In view of its high lethality, the treatment of HBV infections has always presented a huge challenge. The World Health Organization (WHO) came up with ambitious targets for the elimination of hepatitis B as a major public health threat by 2030. To accomplish this goal, one of the WHO’s strategies is to develop curative treatments for HBV infections. Current treatments in a clinical setting included 1 year of pegylated interferon alpha (PEG-IFNα) and long-term nucleoside analogues (NAs). Although both treatments have demonstrated outstanding antiviral effects, it has been difficult to develop a cure for HBV. The reason for this is that covalently closed circular DNA (cccDNA), integrated HBV DNA, the high viral burden, and the impaired host immune responses all hinder the development of a cure for HBV. To overcome these problems, there are clinical trials on a number of antiviral molecules being carried out, all -showing promising results so far. In this review, we summarize the functions and mechanisms of action of various synthetic molecules, natural products, traditional Chinese herbal medicines, as clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR/Cas)-based systems, zinc finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs), all of which could destroy the stability of the HBV life cycle. In addition, we discuss the functions of immune modulators, which can enhance or activate the host immune system, as well some representative natural products with anti-HBV effects.
A new, to the best of our knowledge, method for Stokes vector imaging is proposed to achieve imaging and dynamic monitoring of a non-labeled cytomembrane. In this work, a polarization state vector is described by a Stokes vector and expressed in chrominance space. A physical quantity called polarization chromaticity value (PCV) corresponding to a Stokes vector is used as the imaging parameter to perform Stokes vector imaging. By using the PCV imaging technique, the Stokes vector can be expressed in three-dimensional real space rather than in a Poincare sphere. Furthermore, a four-way Stokes parameter confocal microscopy system is designed to measure four Stokes parameters simultaneously and obtain micro-imaging. Label-free living onion cell membranes and their plasmolysis process are selected as the representative micro-anisotropy experimental analysis. It is proved that PCV imaging can perform visualization of cytomembranes, and further, microscopic orientation is demonstrated. The prospect of universal measurement of anisotropy details for analysis and diagnosis is provided.
Fuzzy Analytical Hierarchy Process (FAHP), as a multi-criterion decision-making method, is especially applied in the establishment of the evaluating criteria system for regional logistics circumstance in this thesis. Regional logistics planning are all the while stranded or difficult to implement, because scientific and effective evaluating method is rarely used in the evaluation of regional logistics circumstance. The seven criterions on 2-level criterion and twenty-nine criterions on 3-level criterion are designed in a model system of evaluation, based on the hardware environment and software environment of regional logistics which are on 1-level criterion. A model is schemed as the evaluating criteria system for regional logistics circumstance, by means of FAHP, AHP and Delphi method. The evaluating criteria system had been applied for the fuzzy comprehensive evaluation of the regional logistics circumstance in Hebei province of China efficaciously.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.