Wireless data center networks (DCNs) are promising solutions to mitigate the cabling complexity in traditional wired DCNs and potentially reduce the end-to-end latency with faster propagation speed in free space. Yet, physical architectures in wireless DCNs must be carefully designed regarding wireless link blockage, obstacle bypassing, path loss, interference and spatial efficiency in a dense deployment. This paper presents the physical layer design of a hybrid FSO/in-fiber DCN while guaranteeing an all-optical, single hop, non-oversubscribed and full-bisection bandwidth network. We propose two layouts and analyze their scalability: (1) A static network utilizing only tunable sources which can scale up to 43 racks, 15, 609 nodes and 15, 609 channels; and (2) a re-configurable network with both tunable sources and piezoelectric actuator (PZT) based beam-steering which can scale up to 8 racks, 2, 904 nodes and 185, 856 channels at millisecond PZT switching time. Based on a traffic generation framework and a dynamic wavelength-timeslot scheduling algorithm, the system-level network performance is simulated for a 363-node subnet, reaching > 99% throughput and 1.23 µs average scheduler latency at 90% load.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.