Modeling and forecasting extreme co-movements in financial market is important for conducting stress test in risk management. Asymptotic independence and asymptotic dependence behave drastically different in modeling such co-movements. For example, the impact of extreme events is usually overestimated whenever asymptotic dependence is wrongly assumed. On the other hand, the impact is seriously underestimated whenever the data is misspecified as asymptotic independent. Therefore, distinguishing between asymptotic independence/dependence scenarios is very informative for any decision-making and especially in risk management. We investigate the properties of the limiting conditional Kendall's tau which can be used to detect the presence of asymptotic independence/dependence. We also propose nonparametric estimation for this new measure and derive its asymptotic limit. A simulation study shows good performances of the new measure and its combination with the coefficient of tail dependence proposed by Ledford and Tawn (1996, 1997). Finally, applications to financial and insurance data are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.