To achieve high coverage of target boxes, a normal strategy of conventional one-stage anchor-based detectors is to utilize multiple priors at each spatial position, especially in scene text detection tasks. In this work, we present a simple and intuitive method for multi-oriented text detection where each location of feature maps only associates with one reference box. The idea is inspired from the twostage R-CNN framework that can estimate the location of objects with any shape by using learned proposals. The aim of our method is to integrate this mechanism into a onestage detector and employ the learned anchor which is obtained through a regression operation to replace the original one into the final predictions. Based on RetinaNet, our method achieves competitive performances on several public benchmarks with a totally real-time efficiency (26.5f ps at 800p), which surpasses all of anchor-based scene text detectors. In addition, with less attention on anchor design, we believe our method is easy to be applied on other analogous detection tasks. The code will publicly available at https://github.com/xhzdeng/stela.
Previous approaches for scene text detection usually rely on manually defined sliding windows. This work presents an intuitive two-stage region-based method to detect multi-oriented text without any prior knowledge regarding the textual shape. In the first stage, we estimate the possible locations of text instances by detecting and linking corners instead of shifting a set of default anchors. The quadrilateral proposals are geometry adaptive, which allows our method to cope with various text aspect ratios and orientations. In the second stage, we design a new pooling layer named Dual-RoI Pooling which embeds data augmentation inside the region-wise subnetwork for more robust classification and regression over these proposals. Experimental results on public benchmarks confirm that the proposed method is capable of achieving comparable performance with state-of-the-art methods. The code is publicly available at https://github.com/xhzdeng/crpn.
Recently, methods based on deep learning have dominated the field of text recognition. With a large number of training data, most of them can achieve the state-of-the-art performances. However, it is hard to harvest and label sufficient text sequence images from the real scenes. To mitigate this issue, several methods to synthesize text sequence images were proposed, yet they usually need complicated preceding or followup steps. In this work, we present a method which is able to generate infinite training data without any auxiliary pre/postprocess. We tackle the generation task as an image-to-image translation one and utilize conditional adversarial networks to produce realistic text sequence images in the light of the semantic ones. Some evaluation metrics are involved to assess our method and the results demonstrate that the caliber of the data is satisfactory. The code and dataset will be publicly available soon.
Previous feature alignment methods in Unsupervised domain adaptation(UDA) mostly only align global features without considering the mismatch between class-wise features. In this work, we propose a new coarse-tofine feature alignment method using contrastive learning called CFContra. It draws class-wise features closer than coarse feature alignment or class-wise feature alignment only, therefore improves the model's performance to a great extent. We build it upon one of the most effective methods of UDA called entropy minimization [47] to further improve performance. In particular, to prevent excessive memory occupation when applying contrastive loss in semantic segmentation, we devise a new way to build and update the memory bank. In this way, we make the algorithm more efficient and viable with limited memory. Extensive experiments show the effectiveness of our method and model trained on the GTA5 [39] to Cityscapes dataset has boost mIOU by 3.5 compared to the MinEnt algorithm [47]. Our code will be publicly available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.