This study clarifies whether vegetation can promote the decrease of indoor PM2.5 concentration. The indoor PM2.5 concentration in two periods of 2013 in Wuhan city was simulated by cigarette burning in a series of sealed chambers. Six common indoor potted plants were selected as samples to investigate the effect of plants on PM2.5 decline. The effects of potted plants on PM2.5 decline were analyzed from three aspects: plant species, leaf characteristics and relative humidity. The results show that the presence of potted plants accelerated the decline of PM2.5. The additional removal rates (excluding gravity sedimentation of PM2.5 itself) for Aloe vera and Epipremnum aureum were 5.2% and 30% respectively, when the initial PM2.5 concentration was around 200 μg/m3. The corresponding values were 0% and 17.2%, respectively, when the initial PM2.5 was around 300 μg/m3. Epipremnum aureum was the optimum potted plant for PM2.5 sedimentation, due to its rough and groove leaf surface, highest LAI (leaf area index, 2.27), and strong humidifying capacity (i.e., can promote chamber humidity to 65% in 30–60 minutes.). Actual indoor studies have also confirmed that a certain amount of Epipremnum aureum can promote the decrease of indoor PM2.5. This paper provides insights on reducing the concentration of fine particulate matter by indoor greening efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.