Photodetectors are one of the most important components for a future “Internet-of-Things” information society. Compared to the mainstream semiconductor-based photodetectors, emerging devices based on two-dimensional (2D) materials and ferroelectrics as well as their hybrid systems have been extensively studied in recent decades due to their outstanding performances and related interesting physical, electrical, and optoelectronic phenomena. In this paper, we review the photodetection based on 2D materials and ferroelectric hybrid systems. The fundamentals of 2D and ferroelectric materials as well as the interaction in the hybrid system will be introduced. Ferroelectricity modulated optoelectronic properties in the hybrid system will be discussed in detail. After the basics and figures of merit of photodetectors are summarized, the 2D-ferroelectrics devices with different structures including p-n diodes, Schottky diodes, and field-effect transistors will be reviewed and compared. The polarization of ferroelectrics offers the possibility of the modulation and enhancement of the photodetection in the hybrid detectors, which will be discussed in depth. Finally, the challenges and perspectives of the photodetectors based on 2D ferroelectrics will be proposed. This Review outlines the important aspects of the recent development of the hybrid system of 2D and ferroelectric materials, which could interact with each other and thus lead to photodetectors with higher performances. Such a Review will be helpful for the research of emerging physical phenomena and for the design of multifunctional nanoscale electronic and optoelectronic devices.
The integration of complex oxides with a wide spectrum of functionalities on Si, Ge and flexible substrates is highly demanded for functional devices in information technology. We demonstrate the remote epitaxy of BaTiO3 (BTO) on Ge using a graphene intermediate layer, which forms a prototype of highly heterogeneous epitaxial systems. The Ge surface orientation dictates the outcome of remote epitaxy. Single crystalline epitaxial BTO3-δ films were grown on graphene/Ge (011), whereas graphene/Ge (001) led to textured films. The graphene plays an important role in surface passivation. The remote epitaxial deposition of BTO3-δ follows the Volmer-Weber growth mode, with the strain being partially relaxed at the very beginning of the growth. Such BTO3-δ films can be easily exfoliated and transferred to arbitrary substrates like Si and flexible polyimide. The transferred BTO3-δ films possess enhanced flexoelectric properties with a gauge factor of as high as 1127. These results not only expand the understanding of heteroepitaxy, but also open a pathway for the applications of devices based on complex oxides.
Photodetection is one of the vital functions for the multifunctional “More than Moore” (MtM) microchips urgently required by Internet of Things (IoT) and artificial intelligence (AI) applications. The further improvement of the performance of photodetectors faces various challenges, including materials, fabrication processes, and device structures. We demonstrate in this work MoS2 photodetectors with a nanoscale channel length and a back-gate device structure. With the mechanically exfoliated six-monolayer-thick MoS2, a Schottky contact between source/drain electrodes and MoS2, a high responsivity of 4.1 × 103 A W–1, and a detectivity of 1.34 × 1013 cm Hz1/2 W–1 at 650 nm were achieved. The devices are also sensitive to multiwavelength lights, including 520 and 405 nm. The electrical and optoelectronic properties of the MoS2 photodetectors were studied in depth, and the working mechanism of the devices was analyzed. The photoinduced Schottky barrier lowering (PIBL) was found to be important for the high performance of the phototransistor.
Previous studies have mainly focused on the resistive switching (RS) of amorphous or polycrystalline HfO2-RRAM. The RS of single crystalline HfO2 films has been rarely reported. Yttrium doped HfO2 (YDH) thin films were fabricated and successful Y incorporation into HfO2 was confirmed by x-ray photoemission spectroscopy. A pure cubic phase of YDH and an abrupt YDH/Si interface were obtained and verified by x-ray diffraction, Raman spectroscopy and transmission electron microscopy. A Pt/YDH/n++-Si heterostructure using Si as the bottom electrode was fabricated, which shows stable RS with an ON/OFF ratio of 100 and a reliable data retention (104 s). The electron transport mechanism was investigated in detail. It indicates that hopping conduction is dominating when the device is at a high resistance state, while space charge limited conduction acts as the dominant factor at a low resistance state. Such behavior, which is different from devices using TiN or Ti as electrodes, was attributed to the Y doping and specific YDH/Si interface. Our results demonstrate a proof of concept study to use highly doped Si as bottom electrodes along with single crystalline YDH as insulator layer for such RRAM applications as wireless sensors and synaptic simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.