Climatic factors are considered the major driving forces for variation of flowering phenology among species. Yet, whether flowering phenology of woody species varies with functional traits, growth form, and phylogeny in arid regions is unknown. In the present study, we evaluated the relationships of three characteristics of flowering phenology (i.e., first flowering date, end of flowering date, and flowering duration) against functional traits, growth form, and phylogeny across 59 woody plant species across 3 years in Ürümqi city of the Xinjiang Autonomous Region, in Northwest China. The results showed that, plant functional traits and growth form had significant influences on the variability of flowering phenology among species. The contributions of fruit type (34.7-43.5%) and flower color (30.1-30.7%) to the variability of flowering phenology were larger than those of pollination mode (4.6-14.4%), life form (8.4-14%) and maximum plant height (9.7-13.1%). Trees had the significant correlations in terms of flowering duration against first flowering date and end of flowering date, while shrubs showed the opposite pattern. The values of phylogenetic signal (Blomberg's K) of the three characteristics of flowering phenology ranged from 0.36 to 0.43, which were significantly lower than the expectation of the Brownian motion model. Our results suggested that functional traits, growth form and phylogeny all affected variability of flowering phenology among species. Our results provide a new perspective for correctly evaluating the relationship between global climate change and plant reproduction.
Research Highlights: 1. Soil fungi have a higher influence on seedling density compared to soil environmental factors; 2. Host-specific pathogens and beneficial fungi affect seeding density via different influencing mechanisms. Background and Objectives: The growth and development of seedlings are the key processes that affect forest regeneration and maintain community dynamics. However, the influencing factors of seedling growth around their adult conspecifics are not clear in arid desert forests. Probing the intrinsic relations among soil fungi, soil environmental factors (pH, water content, salinity, and nutrition), and seedling density will improve our understanding of forest development and provide a theoretical basis for forest management and protection. Materials and Methods: Four experimental plot types, depending on the distance to adult conspecifics, were set in an arid desert forest. Soil environmental factors, the diversity and composition of the soil fungal community, and the seedlings’ density and height were measured in the four experimental plot types, and their mutual relations were analyzed. Results: Seedling density as well as the diversity and composition of the soil fungal community varied significantly among the four plot types (p < 0.05). Soil environmental factors, especially soil salinity, pH, and soil water content, had significant influences on the seedling density and diversity and composition of the soil fungal community. The contribution of soil fungi (72.61%) to the variation in seedling density was much higher than the soil environmental factors (27.39%). The contribution of detrimental fungi to the variation in seedling density was higher than the beneficial fungi. Conclusions: Soil fungi mostly affected the distribution of seedling density in the vicinity of adult conspecifics in an arid desert forest. The distribution of seedling density in the vicinity of adults was mainly influenced by the detrimental fungi, while the adults in the periphery area was mainly influenced by the beneficial fungi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.