Herein, we report an engineered enzyme that can monooxygenate unprotected tryptophan into the corresponding 3a‐hydroxyhexahydropyrrolo[2,3‐b]indole‐2‐carboxylic acid (HPIC) in a single, scalable step with excellent turnover number and diastereoselectivity. Taking advantage of directed evolution, we analyzed the stepwise oxygen‐insertion mechanism of tryptophan 2,3‐dioxygenases, and transformed tryptophan 2,3‐dioxygenase from Xanthomonas campestris into a monooxygenase for oxidative cyclization of tryptophans. It was revealed that residue F51 is vital in determining the product ratio of HPIC to N′‐formylkynurenine. Our reactions and purification procedures use no organic solvents, resulting in an eco‐friendly method to prepare HPICs for further applications.
Herein, we report an engineered enzyme that can monooxygenate unprotected tryptophan into the corresponding 3a‐hydroxyhexahydropyrrolo[2,3‐b]indole‐2‐carboxylic acid (HPIC) in a single, scalable step with excellent turnover number and diastereoselectivity. Taking advantage of directed evolution, we analyzed the stepwise oxygen‐insertion mechanism of tryptophan 2,3‐dioxygenases, and transformed tryptophan 2,3‐dioxygenase from Xanthomonas campestris into a monooxygenase for oxidative cyclization of tryptophans. It was revealed that residue F51 is vital in determining the product ratio of HPIC to N′‐formylkynurenine. Our reactions and purification procedures use no organic solvents, resulting in an eco‐friendly method to prepare HPICs for further applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.