The Faraday probe and cylindrical Langmuir probe were used to characterize the downstream ion and electron spatial evolution of a 300 W class low-power Hall thruster. The time-averaged ion current density, electron energy probability function, plasma potential, electron temperature, and electron density measurements were conducted at discharge voltages of 200–400 V and anode mass flow rates of 0.65 and 0.95 mg s−1 in the range of 100–500 mm axially and −100 to 100 mm radially downstream of the thruster. The results show that the ion and electron flows exhibit a bipolar diffusion characteristic along the radial direction. Meanwhile, the radial diffusion rate of ions in the plume is greater than the axial diffusion rate. The plasma potential decreases from 18 V at 100 mm axially from the thruster exit to 4 V at 500 mm axially and 100 mm radially. Correspondingly, the electron temperature decreases from 4.2 to 1.0 eV. The electron number density decreases from 2.6 × 1016 to 4 × 1014 m−3. A variable exponential relationship between electron temperature and electron density was observed from the measurements of electron energy probability distribution functions, with an adiabatic factor γ ranging between 1.3 and 1.4 (below the adiabatic value of 5/3). The adiabatic factor γ is considered to correlate with the anode mass flux and the spatial location of plasma, which suggests a possible dependence on the collision rate. These data are of great importance for plume model validation, improvement, plume effect evaluation, and protection mechanisms.
This study aimed at discussing the laws of the design parameters of a radio frequency (RF) ion thruster that influence the thruster performance, guide the performance optimization-oriented design of the thruster, and realize the high-accuracy continuous adjustment of the thrust performance. The key influencing parameters of the thrust performance were analyzed by the numerical simulation method. The influencing laws of RF parameters on key plasma parameters, as well as the thermal characteristics of the thruster under the rated parameters, were explored. Moreover, a LRIT-30 RF ion thruster was developed and subjected to the performance adjustment test. The research results demonstrated that the simulation model can describe the plasma parameter distribution of the discharge chamber and the thermal distribution of key components. The 3 cm RF ion thruster performs well under 2 MHz operational frequency. The RF power and gas flow rate are the key influencing factors of beam extraction and are appropriate for the accurate adjustment of parameters. The wide-range adjustment of thrust (0.5–2.3 mN) and specific impulse (869–2564 s) can be realized when the screen-grid voltage, decelerating screen voltage, RF power, and gas flow rate are 1500 V, −200 V, 40–65 W, and 0.4–0.8 SCCM, respectively. The performance indices of the proposed RF ion thruster are close to the international advanced level.
We performed molecular dynamics simulations of the high voltage pulse explosion of single aluminum wires with the energy ratio of 0.6 in vacuum and studied the role of wire radial dimension. Simulation results show that large-diameter wires having a large material depth and a small specific surface can maintain a higher deposition energy density and effectively reduce the influence of the radial difference in thermodynamic parameters, leading to higher explosion velocity and a lower vaporization rate in the large-diameter wire. The most significant effect is that the larger diameter wire has a longer explosion development time. In addition, the propagation and reflection of the rarefaction waves in the wire result in two explosion regimes: the spinodal decomposition propagating inward from the surface and the cavitation boiling from the center to the surface. Increasing the diameter will increase the domination range of the spinodal decomposition mechanism.
In this study, the numerical simulations are used to simulate the discharge process of a 10-cm dual-stage 4-grid (DS4G) radiofrequency (RF) ion thruster, and the effects of RF coil turns, and electrical parameters on the key plasma parameters inside the discharge chamber are investigated. Thus, the optimal design parameters of the thruster are obtained. The RF plasma source has high inductive coupling discharge efficiency when the number of coil turns is six and the operational frequency is 2 MHz. The simulation results show that increasing the number of coil turns can effectively increase the plasma density inside the discharge chamber, and thus improve the efficiency of the inductive coupling discharge, and the operational frequency affects the characteristics of the inductively coupled discharge by influencing the depth of the plasma skinning layer. An experimental thruster demonstrated the 10-cm DS4G RF ion thruster can achieve super high specific impulse. The correctness of the simulation model is verified by the experiment results of the thruster, which will be useful for the optimal design of radio ion thruster or ion sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.