Rationale: Discordant alternans, a phenomenon in which the action potential duration (APDs) and/or intracellular calcium transient durations (CaDs) in different spatial regions of cardiac tissue are out of phase, present a dynamical instability for complex spatial dispersion that can be associated with long-QT syndrome (LQTS) and the initiation of reentrant arrhythmias. Because the use of numerical simulations to investigate arrhythmic effects, such as acquired LQTS by drugs is beginning to be studied by the FDA, it is crucial to validate mathematical models that may be used during this process.Objective: In this study, we characterized with high spatio-temporal resolution the development of discordant alternans patterns in transmembrane voltage (V m ) and intracellular calcium concentration ([Ca i ] +2 ) as a function of pacing period in rabbit hearts. Then we compared the dynamics to that of the latest state-of-the-art model for ventricular action potentials and calcium transients to better understand the underlying mechanisms of discordant alternans and compared the experimental data to the mathematical models representing V m and [Ca i ] +2 dynamics.
Methods and Results:We performed simultaneous dual optical mapping imaging of V m and [Ca i ] +2 in Langendorff-perfused rabbit hearts with higher spatial resolutions compared with previous studies. The rabbit hearts developed discordant alternans through decreased pacing period protocols and we quantified the presence of multiple nodal points along the direction of wave propagation, both in APD and CaD, and compared these findings with results from theoretical models. In experiments, the nodal lines of CaD alternans have a steeper slope than those of APD alternans, but not as steep as predicted by numerical simulations in rabbit models. We further quantified several additional discrepancies between models and experiments.Uzelac et al.
Simultaneous Quantification of Voltage and Intracellular CalciumConclusions: Alternans in CaD have nodal lines that are about an order of magnitude steeper compared to those of APD alternans. Current action potential models lack the necessary coupling between voltage and calcium compared to experiments and fail to reproduce some key dynamics such as, voltage amplitude alternans, smooth development of calcium alternans in time, conduction velocity and the steepness of the nodal lines of APD and CaD.
Heart failure (HF) affects over 5 million Americans and is characterized by impairment of cellular cardiac contractile function resulting in reduced ejection fraction in patients. Electrical stimulation such as cardiac resynchronization therapy (CRT) and cardiac contractility modulation (CCM) have shown some success in treating patients with HF. Computer simulations have the potential to help improve such therapy (e.g. suggest optimal lead placement) as well as provide insight into the underlying mechanisms which could be beneficial. However, these myocyte models require a quantitatively accurate excitation-contraction coupling such that the electrical and contraction predictions are correct. While currently there are close to a hundred models describing the detailed electrophysiology of cardiac cells, the majority of cell models do not include the equations to reproduce contractile force or they have been added ad hoc. Here we present a systematic methodology to couple first generation contraction models into electrophysiological models via intracellular calcium and then compare the resulting model predictions to experimental data. This is done by using a post-extrasystolic pacing protocol, which captures essential dynamics of contractile forces. We found that modeling the dynamic intracellular calcium buffers is necessary in order to reproduce the experimental data. Furthermore, we demonstrate that in models the mechanism of the post-extrasystolic potentiation is highly dependent on the calcium released from the Sarcoplasmic Reticulum. Overall this study provides new insights into both specific and general determinants of cellular contractile force and provides a framework for incorporating contraction into electrophysiological models, both of which will be necessary to develop reliable simulations to optimize electrical therapies for HF.
We describe the implementation of the explicit Euler, Crank-Nicolson, and implicit alternating direction methods for solving partial differential equations and apply these methods to obtain numerical solutions of three excitable-media models used to study neurons and cardiomyocyte dynamics. We discuss the implementation, accuracy, speed, and stability of these numerical methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.