Primary ovarian insufficiency (POI) is a clinical syndrome of ovarian dysfunction characterized by premature exhaustion of primordial follicles. POI causes infertility, severe daily life disturbances and long-term health risks. However, the underlying mechanism remains largely unknown. We previously identified a Basonuclin 1 (BNC1) mutation from a large Chinese POI pedigree and found that mice with targeted Bnc1 mutation exhibit symptoms of POI. In this study, we found that BNC1 plays key roles in ovarian reserve and maintaining lipid metabolism and redox homeostasis in oocytes during follicle development. Deficiency of BNC1 results in premature follicular activation and excessive follicular atresia. Mechanistically, BNC1 deficiency triggers oocyte ferroptosis via the NF2-YAP pathway. We demonstrated that pharmacologic inhibition of YAP signaling or ferroptosis significantly rescues Bnc1 mutation-induced POI. These findings uncover a pathologic mechanism of POI based on BNC1 deficiency and suggest YAP and ferroptosis inhibitors as potential therapeutic targets for POI.
Background Thin endometrium is a primary cause of defective endometrial receptivity, resulting in infertility or recurrent miscarriage. Much effort has been devoted toward regenerating thin endometrium by stem cell-based therapies. The human placenta-derived mesenchymal stem cells (HP-MSCs) are emerging alternative sources of MSCs with various advantages. To maximize their retention inside the uterus, we loaded HP-MSCs with cross-linked hyaluronic acid hydrogel (HA hydrogel) to investigate their therapeutic efficacy and possible underlying mechanisms. Methods Ethanol was injected into the mice uterus to establish the endometrium-injured model. The retention time of HP-MSCs and HA hydrogel was detected by in vivo imaging, while the distribution of HP-MSCs was detected by immunofluorescence staining. Functional restoration of the uterus was assessed by testing embryo implantation rates. The endometrial morphological alteration was observed by H&E staining, Masson staining, and immunohistochemistry. In vitro studies were further conducted using EdU, transwell, tube formation, and western blot assays. Results Instilled HP-MSCs with HA hydrogel (HP-MSCs-HA) exhibited a prolonged retention time in mouse uteri than normal HP-MSCs. In vivo studies showed that the HP-MSCs-HA could significantly increase the gland number and endometrial thickness (P < 0.001, P < 0.05), decrease fibrous area (P < 0.0001), and promote the proliferation and angiogenesis of endometrial cells (as indicated by Ki67 and VEGF, P < 0.05, P < 0.05, respectively) in mice injured endometrium. HP-MSCs-HA could also significantly improve the embryo implantation rate (P < 0.01) compared with the ethanol group. Further mechanistic study showed the paracrine effects of HP-MSCs. They could not only promote the proliferation and migration of human endometrial stromal cells via the JNK/Erk1/2-Stat3-VEGF pathway but also facilitate the proliferation of glandular cells via Jak2-Stat5 and c-Fos-VEGF pathway. In turn, the increased VEGF in the endometrium promoted the angiogenesis of endothelial cells. Conclusion Our study suggested the potential therapeutic effects and the underlying mechanisms of HP-MSCs-HA on treating thin endometrium. HA hydrogel could be a preferable delivery method for HP-MSCs, and the strategy represents a promising therapeutic approach against endometrial injury in clinical settings. Graphical abstract
Intrauterine adhesions (IUA), which is characterized by endometrial fibrosis, continue to be the most common cause of uterine infertility globally. Our work revealed that 3 fibrotic progression markers (Vimentin, COL5A2, and COL1A1) were significantly increased in the endometrium of IUA patients. Mesenchymal stem cell–derived exosomes (EXOs) have been recently revealed as a cell-free therapy for fibrosis diseases. Nevertheless, the application of EXOs is restricted by the short residency duration in the target tissue. To overcome this limitation, herein, we reported an exosome–based regimen (EXOs-HP) that thermosensitive poloxamer hydrogel possessed the ability to efficiently promote the residency duration of EXOs in the uterine cavity. By downregulating fibrotic progression markers (Vimentin, COL5A2, and COL1A1), EXOs-HP could significantly restore the function and structure of the injured endometrium in the IUA model. Our work provides the theoretical and experimental foundation of EXOs-HP in treating IUA, highlighting the clinical potential of topical EXOs-HP delivery system in IUA patients.
Increasing evidences showed ovulatory dysfunction, possibly caused by luteinized unruptured follicular follicle syndrome(LUFS), is one of the reasons for endometriosis-related infertility. The present study was conducted to explore the potential effect of elevated progesterone in follicular fluid (FF) on ovulation in endometriosis. A prospective study including 50 ovarian endometriosis patients and 50 control patients with matched pairs design was conducted with alterations in FF and peritoneal fluid (PF) components identified by metabolomics analyses and differentially expressed genes in granulosa cells (GCs) identified by transcriptome analysis. Patients with endometriosis exhibited a significantly higher progesterone level in serum, FF and PF. GCs from endometriosis patients revealed decreased expression of HPGD, COX-2 and suppressed NF-кB signaling. Similarly, progesterone treatment in vitro down-regulated HPGD and COX2 expression and suppressed NF-кB signaling in granulosa tumor-like cell line KGN (Bena culture collection, China) and primarily cultured GCs, as manifested by decreased expressions of IL1R1, IRAK3, reduced pIкBα/IкBα ratio and nucleus translocation of p65. On the contrary, TNF-α treatment increased expression of IL1R1, IRAK3, pIкBα, p65 and HPGD in GCs. One potential p65 binding site was identified in the promoter region of HPGD by chromatin immunoprecipitation. In conclusion, we found intrafollicular progesterone might down-regulate HPGD and COX-2 in GCs via suppressing the NF-кB signaling pathway, shedding light on the mechanism underlying the endometriosis related ovulatory dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.