Introduction: Cases with organ-specific and systemic vasculitis associated with corona virus disease 2019 (COVID-19) vaccination have been reported. However, acute partial transverse myelitis (APTM) is rare adverse events following received COVID-19 vaccines. To the best of our knowledge, there is no report on vaccine-associated APTM accompanied by possible concurrent vasculitis. Herein we present a case with possible concurrent spinal vasculitis and APTM following the second dose of inactivated COVID-19 vaccine. Case summary: A 33-year-old man presented with weakness of left lower limb and aberrant sensation of his left lower trunk and limb (from T9 level to toes) for 2 days following receipt of an inactivated COVID-19 vaccine. Remarkable demyelinating lesion at T7 spinal cord was showed by 3.0T magnetic resonance imaging (MRI) scan. Moreover, vertebral bodies of T3-T7 also presented high signal in T-2 weighted imaging (T2WI) accompanied by multiple sites of flowing void effect indicating possible vasculitis. Oligoclonal band was positive in cerebrospinal fluid (CSF) while it was negative in sera. Intravenous methylprednisolone (1 g/d) was administrated for 5 days followed by subsequent dose-tapering prednisone. His limb weakness and aberrant sensation both improved and he was able to walk unaided after treatment. The MRI recheck also showed remarkable improvement on the lesions in spinal cord and vertebral bodies. Conclusion: this case illustrates the concurrence of possible vasculitis in vertebral bodies and acute transverse myelitis (ATM) following COVID-19 vaccination.
Anterior inferior cerebellar artery (AICA) occlusion is a subtype of posterior circulation stroke. Confirmation of its angiomorphology and etiology is challenging because of the complex mechanisms underlying small-artery thrombogenesis. In addition to conventional factors, physicians frequently overlook hemorheological changes. In this case report, we describe right AICA occlusion in a 50-year-old man. He presented with an unsteady walk, tinnitus, dizziness, and left-sided peripheral facial palsy observed over 36 hours, accompanied by increased blood viscosity on hemorheological evaluation. Magnetic resonance imaging revealed acute infarction in the left cerebellar hemisphere and middle cerebellar peduncles. Magnetic resonance angiography (MRA) and computed tomographic angiography (CTA) failed to detect AICA occlusion, which was later confirmed using digital subtraction angiography. Repeat routine blood examinations showed elevated erythrocyte and leukocyte counts and serum hemoglobin concentrations that persisted over many days. Hemorheological evaluation revealed increased whole blood viscosity at a low shear rate. AICA occlusion should thus be diagnosed based on its initial characteristic manifestations; notably, MRA and CTA may fail to detect arterial occlusion. The importance of hemorheological change as a factor of stroke is frequently neglected. We therefore report this case hoping to emphasize its relevance, especially in small-artery occlusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.