Materials that possess coupled magnetic and electric properties are of significant interest because of their potential use in next-generation magnetoelectric devices such as digital information storage. To date, the magnetoelectric materials that have been studied in-depth have been limited mainly to inorganic oxides such as perovskite oxides. Molecular materials are a promising alternative because their magnetic and electric elements can be combined together at the molecular level via relatively simple molecular designs. Here, we report the coupling of magnetic and electric properties through a magnetodielectric (MD) effect in a single-crystal sample, which is constructed from dysprosium(III) single-molecule magnets (SMMs). The MD effect originates from intrinsic spin-lattice coupling of the dysprosium(III) ion within the sample. This is the first observation of the MD effect in a SMM-based material, which could pave the way toward the synthesis of advanced materials that combine distinct magnetic and electric properties using molecular chemistry for use in molecular devices with nanoscale size.
Multiferroic pure and Er-doped BiFeO3 thin films were prepared using a sol–gel technique. The effect of Er-doped concentration on the crystal structure and on the ferroelectric and leakage current properties of BiFeO3 films were studied in detail. The study showed the enhanced ferroelectric polarization and reduced leakage current density that occurred after doping Er. Such improved ferroelectric and leakage properties are attributed to ferroelectric distortion and to the change of leakage current conduction mechanisms derived from the structural transformation that occurred after doping Er. The rhombohedral structure of pure BiFeO3 transforms to the coexistence of tetragonal and orthorhombic symmetry structure as Er-doped concentration x increased gradually to 0.15, then to the orthorhombic structure when x = 0.20. The present work provides an easy method to decrease the leakage current and improve the ferroelectric properties of BiFeO3 films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.