Intervertebral disc degeneration (IVDD), one of the most common clinical diseases worldwide, causes disc herniation and sciatica. Recent studies have identified the involvement of mitochondrial dysfunction, inflammatory responses, and extracellular matrix degradation in IVDD. Mangiferin is known to protect against various diseases by inhibiting oxidative stress, suppressing inflammation reaction, and relieving mitochondrial dysfunction. Whether mangiferin can alleviate IVDD remains to be elucidated. In the present study, human nucleus pulposus cells (HNPCs) and mouse intervertebral discs were cultured and stimulated with TNF-α, with or without treatment of mangiferin. Moreover, we established a rat needle puncture model and injected mangiferin into the intervertebral discs to verify its protective effect on IVDD. Furthermore, the activity of the NF-κB signaling pathway was tested in vitro. Our results indicated that mangiferin alleviated the inflammatory response and reversed the loss of major intervertebral disc components. Besides, mangiferin reduced reactive oxygen species production, ameliorated mitochondrial damage, and decreased the expression of apoptosis-related parameters in stimulation of TNF-α. In addition, mangiferin antagonized the activation of the NF-κB signaling pathway induced by TNF-α. Collectively, mangiferin antagonized mitochondrial ROS in NP cells and protected against IVDD by suppressing the activation of the NF-κB signaling pathway, which might provide a potential therapeutic instrument for IVDD.
Abstract:In this study, a monthly dataset of temperature time series from 12 meteorological stations across the Three-River Headwater Region of Qinghai Province (THRHR) was used to analyze the climate change. The temperature variation and abrupt change analysis were examined by using moving average, linear regression, Spline interpolation, Mann-Kendall test and so on. Some important conclusions were obtained from this research, which mainly contained four aspects as follows. (1) There were several cold and warm fluctuations for the annual and seasonal average temperature in the THRHR and its three sub-headwater regions, but the temperature in these regions all had an obviously rising trend at the statistical significance level, especially after 2001. The spring, summer, autumn and annual average temperature increased evidently after the 1990s, and the winter average temperature exhibited an obvious upward trend after entering the 21st century. Except the standard value of spring temperature, the annual and seasonal temperature standard value in the THRHR and its three sub-headwater regions increased gradually, and the upward trend for the standard value of winter average temperature indicated significantly. (2) The tendency rate of annual average temperature in the THRHR was 0.36 10a 1 , while the tendency rates in the Yellow River Headwater Region (YERHR), Lancangjiang River Headwater Region (LARHR) and Yangtze River Headwater Region (YARHR) were 0.37 10a 1 , 0.37 10a 1 and 0.34 10a 1 respectively. The temperature increased significantly in the south of YushuCounty and the north of Nangqian County. The rising trends of temperature in winter and autumn were higher than the upward trends in spring and summer. (3) The abrupt changes of annual, summer, autumn and winter average temperature were found in the THRHR, LARHR and YARHR, and were detected for the summer and autumn average temperature in the YERHR. The abrupt changes of annual and summer average temperatures were mainly in the late 1990s, while the abrupt changes of autumn and winter average temperatures appeared primarily in the early 1990s and the early 21st century respectively. (4) With the global
452Journal of Geographical Sciences warming, the diversities of altitude and underlying surface in different parts of the Tibetan Plateau were possibly the main reasons for the high increasing rate of temperature in the THRHR.
Constructing high-performance-2D heterostructures and deciphering the underlying microscopic mechanism of carrier dynamics are crucial in optoelectronic and photovoltaic applications. Here, taking black phosphorus (BP)/MoS 2 heterostructure with type-II band alignment as a prototypical example, the ab initio nonadiabatic molecular dynamics simulations demonstrate that the interlayer carrier dynamics are thickness dependent. Specifically, the electron transfer from a monolayer (1L)-BP to MoS 2 occurs quickly within 54 fs. In contrast, hole transfer can only be observed within 1 ps with BP's layer number N ≥ 2, triggered by the excitation of low-frequency acoustic phonon and interlayer shear and breathing phonon modes within 100 cm -1 that enhances the interlayer coupling. Particularly, the electron and hole transfer time exhibits respectively linear and exponential dependence on the layer number N of BP component. The present findings shed new light on improving the process of ultrafast carrier dynamics of 2D heterostructures for photoconversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.