Janus transition-metal dichalcogenides (TMDCs) are emerging as special 2D materials with different chalcogen atoms covalently bonded on each side of the unit cell, resulting in interesting properties. To date, several synthetic strategies have been developed to realize Janus TMDCs, which first involves stripping the top-layer S of MoS2 with H atoms. However, there has been little discussion on the intermediate Janus MoSH. It is critical to find the appropriate plasma treatment time to avoid sample damage. A thorough understanding of the formation and properties of MoSH is highly desirable. In this work, a controlled H2-plasma treatment has been developed to gradually synthesize a Janus MoSH monolayer, which was confirmed by the TOF-SIMS analysis as well as the subsequent fabrication of MoSSe. The electronic properties of MoSH, including the high intrinsic carrier concentration (∼2 × 1013 cm–2) and the Fermi level (∼ – 4.11 eV), have been systematically investigated by the combination of FET device study, KPFM, and DFT calculations. The results demonstrate a method for the creation of Janus MoSH and present the essential electronic parameters which have great significance for device applications. Furthermore, owing to the metallicity, 2D Janus MoSH might be a potential platform to observe the SPR behavior in the mid-infrared region.
Ultrathin hexagonal boron nitride (h-BN) has recently attracted a lot of attention due to its excellent properties. With the rapid development of chemical vapor deposition (CVD) technology to synthesize wafer-scale single-crystal h-BN, the properties of h-BN have been widely investigated with a variety of material characterization techniques. However, the electronic properties of monolayer h-BN have rarely been quantitatively determined due to its atomically thin thickness and high sensitivity to the surrounding environment. In this work, by the combined use of AFM (atomic force microscope) PeakForce Tunneling (PF-TUNA) mode and Kevin probe force microscopy (KPFM) model, both the electrical resistivity (529 MΩ cm) and the inherent Fermi level (∼4.95 eV) of the as-grown monolayer h-BN flakes on the copper substrate have been quantitatively analyzed. Moreover, direct visualization of the high-temperature oxidation-resistance effect of h-BN nanoflakes has been presented. Our work demonstrates a direct estimation of the electronic properties for 2D materials on the initial growth substrate without transfer, avoiding any unwanted contaminations introduced during the transfer process. The quantitative analysis by state-of-the-art atomic force microscope techniques implies that monolayer h-BN can be employed as an atomically thin and high-quality insulator for 2D electronics, as well as a high-temperature antioxidation layer for electronic device applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.