Curcumin is an active component derived from Curcuma longa L. which is a traditional Chinese medicine that is widely used for treating metabolic diseases through regulating different molecular pathways. Here, in this study, we aimed to comprehensively investigate the effects of curcumin on glycolipid metabolism in vivo and in vitro and then determine the underlying mechanism. Male C57BL/6 J obese mice and 3T3-L1 adipocytes were used for in vivo and in vitro study, respectively. Our results demonstrated that treatment with curcumin for eight weeks decreased body weight, fat mass and serum lipid profiles. Meanwhile, it lowered fasting blood glucose and increased the insulin sensitivity in high-fat diet-induced obese mice. In addition, curcumin stimulated lipolysis and improved glycolipid metabolism through upregulating the expressions of adipose triglyceride lipase and hormone-sensitive lipase, peroxisome proliferator activated receptor γ/α (PPARγ/α) and CCAAT/enhancer binding proteinα (C/EBPα) in adipose tissue of the mice. In differentiated 3T3-L1 cells, curcumin reduced glycerol release and increased glucose uptake via upregulating PPARγ and C/EBPα. We concluded that curcumin has the potential to improve glycolipid metabolism disorders caused by obesity through regulating PPARγ signalling pathway.
Type 2 diabetes mellitus (T2DM) is closely related to depression; however, the exact molecular mechnisms of this association are unknown. Here, we investigated whether circular RNAs (circRNAs) in the blood are related to the occurrence of depression in patients with T2DM. Fourteen patients with T2DM and depressive symptoms, as assessed by the Self-Rating Depression Scale, were included in this study. Cutoff points of 44 (total coarse points) and 55 (standard score) were used to define depression. The Patient Health Questionnaire 9 was used for common mental disorders, and a score of 5 or more the cutoff for depression. Microarray assays and quantitative real-time reverse transcription polymerase chain reaction showed that 183 hsa-circRNAs were significantly upregulated, whereas 64 were downregulated in the T2DM with depression group (p < 0.05) compared with that in the T2DM group. Differentially expressed hsa-circRNAs could interact with microRNAs to target mRNA expression. KEGG pathway analysis predicted that upregulation of hsa-circRNA_003251, hsa-circRNA_015115, hsa-circRNA_100918, and hsa_circRNA_001520 may participate in the thyroid hormone, Wnt, ErbB, and mitogen-activated protein kinase signalling pathways. We speculate that differentially expressed hsa-circRNAs could help us to clarify the pathogenesis of depression in patients with T2DM and could represent novel molecular targets for clinical diagnosis and therapy.
Accumulating evidence has demonstrated that endothelial progenitor cells (EPCs) could facilitate the reendothelialization of injured arteries by replacing the dysfunctional endothelial cells, thereby suppressing the formation of neointima. Meanwhile, other findings suggest that EPCs may be involved in the pathogenesis of age-related vascular remodeling. This review is presented to summarize the characteristics of EPCs and age-related vascular remodeling. In addition, the role of EPCs in age-related vascular remodeling and possible solutions for improving the therapeutic effects of EPCs in the treatment of age-related diseases are discussed.
Background/Aims: Tanshinone IIA (Tan IIA) is effective in the treatment of inflammation and atherosclerosis. The adhesion of inflammatory cells to vascular endothelium plays important role in atherogenic processes. This study examined the effects of Tan IIA on expression of adhesion molecules in tumor necrosis factor-α (TNF-α)-induced endothelial progenitor cells (EPCs). Methods: EPCs were pretreated with Tan IIA and stimulated with TNF-α. Mononuclear cell (MNC) adhesion assay was performed to assess the effects of Tan IIA on TNF-α-induced MNC adhesion. Expression of vascular cell adhesion molecule-1 (VCAM-1)/intracellular adhesion molecule-1 (ICAM-1) and activation of Nuclear factor κB (NF-κB) signaling pathway were measured. Results: The results showed that the adhesion of MNCs to TNF-α-induced EPCs and expression of VCAM-1/ICAM-1 in EPCs were promoted by TNF-α, which were reduced by Tan IIA. TNF-α increased the amount of phosphorylation of NF-κB, IκB-α and IKKα/β in cytosolic fractions and NF-κB p65 in nucleus, while Tan IIA reduced its amount. Conclusion: This study demonstrated a novel mechanism for the anti-inflammatory/anti-atherosclerotic activity of Tan IIA, which may involve down-regulation of VCAM-1 and ICAM-1 through partial blockage of TNF-α-induced NF-κB activation and IκB-α phosphorylation by the inhibition of IKKα/β pathway in EPCs.
This study sought to identify sources of the reduced fertility of men with type 2 diabetes mellitus. Significant reductions in semen volume, sperm concentration, and total sperm count were observed in diabetic individuals, while transmission electron microscopy revealed that the structure of mitochondria in the tail of sperm from diabetic patients was damaged. Proteins potentially associated with these sperm defects were identified using proteomics. Isobaric tagging for relative and absolute quantitation labeling and high-performance liquid chromatography-tandem mass spectrometry allowed us to identify 357 proteins significantly differentially expressed in diabetic versus control semen (>1.2 or <0.83). According to gene ontology enrichment and pathway analyses, many of these differentially expressed proteins are associated with sperm function, including binding of sperm to the zona pellucida and proteasome function; of particular interest, half of these proteins were related to mitochondrial metabolism. Protein-interaction networks revealed that a decrease in Cystatin C and Dipeptidyl peptidase 4 in the mitochondria may be sources of the decreased motility of sperm from diabetic patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.