Polycyclic aromatic hydrocarbons (PAHs) are highly hard-biodegradable compounds. Therefore, in this work, a multisubstrate enrichment approach was proposed to develop a bacterial community named MBF from activated sludge of coking wastewater plant capable of degrading mixed-PAHs consisting of phenanthrene and pyrene (50 mg/L of each) by 98.8% and 73.3% within 5 days, respectively. The bacterial community could maintain its degradation ability to mixed PAHs relatively under temperatures (20°C–35°C), pH values (5.0–9.0), and salinities (0–10 g/L NaCl). Additionally, the bacterial community MBF degraded 58.9%, 79.9%, and 80.7% of mixed PAHs in the presence of catechol, salicylic acid, and phthalic acid, respectively within 5 days. High-throughput sequencing of 16S rRNA gene amplicon analysis showed that the bacterial community MBF was dominated by Pseudomonas in most treatments, and Burkholderia was predominant under both acidic condition and high salt concentrations. Furthermore, the composition of microbial communities of the bacterial community was significantly different with/without addition of pathway intermediate metabolites after biodegradation of mixed PAHs, revealing the metabolic burden may be distributed between members of this bacterial community. Those results demonstrate that the biodegradation ability of MBF could be maintained with the bacterial community structure altering when facing environmental variations or changes in composition of target contaminants.
The degradation of polycyclic aromatic hydrocarbons has attracted much attention. Based on toluene-catechol-anthracene multi-substrate progressive domestication, a mixed microbial consortium with synergistic metabolic activity was screened from the activated sludge of coking wastewater. High-throughput sequencing showed that the consortium was dominated by Flavobacteriia at the class level, with the proportion increasing from 8.88% to 56.41% after domestication, and that Myroides and Brevundimonas dominated at the genus level, increasing from less than 1% to 55.53% and 12.28%, respectively. Under temperature conditions of 30 °C, a pH of 7, and an initial anthracene concentration of 40 mg L-1, the degradation ratio reached 85.7% just 16 days after inoculation. Degradation ratio of Anthracene (40 mg L-1) via the consortium plus an indigenous strain Pseudomonas_aeruginosa DM3 on the sixth day (83%) equated to that in the control group without DM3 on the 12th day. The first-order rate constant (k=0.240 and 0.159 d-1) was calculated for the anthracene degradation within 10 days, with a corresponding half-life by the consortium of 2.9 days with DM3 and 4.4 days without DM3. The metabolites 1-naphthol, dibutyl phthalate, and 1,2-benzene dicarboxylic acid, mono (2-ethylhexyl) ester were presented in the reaction, inferring the metabolic pathway of phthalic acid. Our work revealed that inoculating the mixed microbial consortium with indigenous Pseudomonas aeruginosa DM3 has the potential for removing polycyclic aromatic hydrocarbons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.