Weakly supervised instance segmentation with imagelevel labels, instead of expensive pixel-level masks, remains unexplored. In this paper, we tackle this challenging problem by exploiting class peak responses to enable a classification network for instance mask extraction. With image labels supervision only, CNN classifiers in a fully convolutional manner can produce class response maps, which specify classification confidence at each image location. We observed that local maximums, i.e., peaks, in a class response map typically correspond to strong visual cues residing inside each instance. Motivated by this, we first design a process to stimulate peaks to emerge from a class response map. The emerged peaks are then back-propagated and effectively mapped to highly informative regions of each object instance, such as instance boundaries. We refer to the above maps generated from class peak responses as Peak Response Maps (PRMs). PRMs provide a fine-detailed instance-level representation, which allows instance masks to be extracted even with some off-the-shelf methods. To the best of our knowledge, we for the first time report results for the challenging image-level supervised instance segmentation task. Extensive experiments show that our method also boosts weakly supervised pointwise localization as well as semantic segmentation performance, and reports state-ofthe-art results on popular benchmarks, including PASCAL VOC 2012 and MS COCO. 1
Deep Convolution Neural Networks (DCNNs) are capable of learning unprecedentedly effective image representations. However, their ability in handling significant local and global image rotations remains limited. In this paper, we propose Active Rotating Filters (ARFs) that actively rotate during convolution and produce feature maps with location and orientation explicitly encoded. An ARF acts as a virtual filter bank containing the filter itself and its multiple unmaterialised rotated versions. During backpropagation, an ARF is collectively updated using errors from all its rotated versions. DCNNs using ARFs, referred to as Oriented Response Networks (ORNs), can produce within-class rotation-invariant deep features while maintaining inter-class discrimination for classification tasks. The oriented response produced by ORNs can also be used for image and object orientation estimation tasks. Over multiple state-of-the-art DCNN architectures, such as VGG, ResNet, and STN, we consistently observe that replacing regular filters with the proposed ARFs leads to significant reduction in the number of network parameters and improvement in classification performance. We report the best results on several commonly used benchmarks 1 .
Weakly supervised object localization remains challenging, where only image labels instead of bounding boxes are available during training. Object proposal is an effective component in localization, but often computationally expensive and incapable of joint optimization with some of the remaining modules. In this paper, to the best of our knowledge, we for the first time integrate weakly supervised object proposal into convolutional neural networks (CNNs) in an end-to-end learning manner. We design a network component, Soft Proposal (SP), to be plugged into any standard convolutional architecture to introduce the nearly cost-free object proposal, orders of magnitude faster than state-of-the-art methods. In the SP-augmented CNNs, referred to as Soft Proposal Networks (SPNs), iteratively evolved object proposals are generated based on the deep feature maps then projected back, and further jointly optimized with network parameters, with image-level supervision only. Through the unified learning process, SPNs learn better object-centric filters, discover more discriminative visual evidence, and suppress background interference, significantly boosting both weakly supervised object localization and classification performance. We report the best results on popular benchmarks, including PASCAL VOC, MS COCO, and ImageNet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.