The Kitaev spin liquid (KSL) system has attracted tremendous attention in recent years because of its fundamental significance in condensed matter physics and promising applications in fault-tolerant topological quantum computation. Material realization of such a system remains a major challenge in the field due to the unusual configuration of anisotropic spin interactions, though great effort has been made before. Here we reveal that rare-earth chalcohalides REChX (RE = rare earth; Ch = O, S, Se, Te; X = F, Cl, Br, I) can serve as a family of KSL candidates. Most family members have the typical SmSI-type structure with a high symmetry of R 3 ¯ m , and rare-earth magnetic ions form an undistorted honeycomb lattice. The strong spin-orbit coupling of 4f electrons intrinsically offers anisotropic spin interactions as required by the Kitaev model. We have grown the crystals of YbOCl and synthesized the polycrystals of SmSI, ErOF, HoOF and DyOF, and made careful structural characterizations. We carry out magnetic and heat capacity measurements down to 1.8 K and find no obvious magnetic transition in all the samples but DyOF. The van der Waals interlayer coupling highlights the true two-dimensionality of the family which is vital for the exact realization of Abelian/non-Abelian anyons, and the graphene-like feature will be a prominent advantage for developing miniaturized devices. The family is expected to act as an inspiring material platform for the exploration of KSL physics.
SLIT2/ROBO1 signalling may regulate trophoblast differentiation and invasion causing restricting β-hCG production, shallow trophoblast invasion and inhibiting placental angiogenesis in missed and threatened miscarriage during the first trimester.
To reveal the extra-and intramuscular nerve distribution patterns of the gluteus maximus, medius, and minimus, and to provide guidance for gluteal muscle injection in order to avoid nerve injury. Ten adult and 10 child cadavers were used. The superior and inferior gluteal nerves innervating the gluteus maximus, medius, and minimus were dissected, exposed, and sutured in-situ on the muscle. The three gluteal muscles were removed, and the distribution patterns of the intramuscular nerves were revealed by modified Sihler's nerve staining. The nerve distribution pattern was returned to the corresponding position in the body, and the patterns in the four quadrants of the buttock were analyzed. There were 3-12 extramuscular nerve branches of the gluteus maximus, medius, and minimus. After entering the muscle, these nerve branches arborized and anastomosed to form an arc-shaped, nerve-dense zone. The nerve distribution was most dense in the inferomedial region of the superolateral quadrant and the inferolateral region of the superomedial quadrant of the buttocks. The nerve distribution was relatively dense in the inferolateral region of the superolateral quadrant, and the medial region of the inferomedial quadrant. An arc-shaped, nerve-sparse zone in the superolateral and superomedial quadrants near the lower iliac crest accounted for about two-fifths of the two quadrants' limits. The arc-shaped, nerve-sparse zone in the superolateral quadrant is the preferred injection site, and the superomedial quadrant near the lower iliac crest is also recommended as a gluteal intramuscular injection region, free from nerve injury.
Recently, the family of rare-earth chalcohalides were proposed as candidate compounds to realize the Kitaev spin liquid (KSL) [Chin. Phys. Lett. 38 047502 (2021)]. In the present work, we firstly propose an effective spin Hamiltonian consistent with the symmetry group of the crystal structure. Then we apply classical Monte Carlo simulations to preliminarily study the model and establish a phase diagram. When approaching to the low temperature limit, several magnetic long range orders are observed, including the stripe, the zigzag, the antiferromagnetic (AFM), the ferromagnetic (FM), the incommensurate spiral (IS), the multi- Q , and the 120° ones. We further calculate the thermodynamic properties of the system, such as the temperature dependence of the magnetic susceptibility and the heat capacity. The ordering transition temperatures reflected in the two quantities agree with each other. For most interaction regions, the system is magnetically more susceptible in the ab-plane than in the c-direction. The stripe phase is special, where the susceptibility is fairly isotropic in the whole temperature region. These features provide useful information to understand the magnetic properties of related materials.
Rare-earth chalcohalide REChX (RE = rare earth; Ch = O, S, Se, Te; X = F, Cl, Br, I) is a newly reported family of Kitaev spin liquid candidates. The family offers a platform where a strong spin-orbit coupling meets a van der Waals layered and undistorted honeycomb spin lattice, which outputs highly anisotropic exchange couplings required by the Kitaev model. YbOCl is the first single crystal of the family we grew, with a size up to ∼15 mm. We have performed magnetization and high magnetic field electron spin resonance measurements from 2 to 300 K. We develop the mean-field scenario for the anisotropic spin system, with which we are able to well describe the experiments and reliably determine the fundamental parameters. The self-consistent simulations give the anisotropic spin-exchange interactions of J ± (∼ − 0.3 K) and J zz (∼1.6 K), and g factors of g ab (∼3.4) and g c (∼2.9). Based on the spin-exchange interactions, we employ the exact diagonalization method to work out the ground state phase diagram of YbOCl in terms of the off-diagonal exchange couplings. The phase diagram hosting rich magnetic phases including the spin-disordered one, sheds light on the novel magnetic properties of the family, particularly the Kitaev physics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.