Obesity or a high-fat diet represses the endoribonuclease activity of inositol-requiring enzyme 1α (IRE1α), a transducer of the unfolded protein response (UPR) in cells under endoplasmic reticulum (ER) stress. An impaired UPR is associated with hepatic steatosis and non-alcoholic fatty liver disease (NAFLD), which is caused by lipid accumulation in the liver. Here, we found that IRE1α was critical to maintaining lipid homeostasis in the liver by repressing the biogenesis of microRNAs (miRNAs) that regulate lipid mobilization. In mice fed normal chow, the endoribonuclease function of IRE1α processed a subset of precursor miRNAs in the liver, including those of the miR-200 and miR-34 families, such that IRE1α promoted their degradation through the process of regulated IRE1-dependent decay (RIDD). A high-fat diet in mice or hepatic steatosis in patients was associated with the S-nitrosylation of IRE1α and inactivation of its endoribonuclease activity. This resulted in an increased abundance of these miRNA families in the liver and, consequently, a decreased abundance of their targets, which included peroxisome proliferator-activated receptor α (PPARα) and the deacetylase sirtuin 1 (SIRT1), regulators of fatty acid oxidation and triglyceride lipolysis. IRE1α deficiency exacerbated hepatic steatosis in mice. The abundance of the miR-200 and miR-34 families was also increased in cultured, lipid-overloaded hepatocytes and in the livers of patients with hepatic steatosis. Our findings reveal a mechanism by which IRE1α maintains lipid homeostasis through its regulation of miRNAs, a regulatory pathway distinct from the canonical IRE1α-UPR pathway under acute ER stress.
This review summarized the key in vivo peptidases and their tissue distribution characteristics, and presented strategies to improve the metabolic stability and bioavailability of peptide drugs. These viewpoints will benefit the further development and utilization of peptide drugs.
The endoplasmic reticulum‐associated protein degradation (ERAD) is responsible for recognizing and retro‐translocating protein substrates, misfolded or not, from the ER for cytosolic proteasomal degradation. HMG‐CoA Reductase (HMGCR) Degradation protein—HRD1—was initially identified as an E3 ligase critical for ERAD. However, its physiological functions remain largely undefined. Herein, we discovered that hepatic HRD1 expression is induced in the postprandial condition upon mouse refeeding. Mice with liver‐specific HRD1 deletion failed to repress FGF21 production in serum and liver even in the refeeding condition and phenocopy the FGF21 gain‐of‐function mice showing growth retardation, female infertility, and diurnal circadian behavior disruption. HRD1‐ERAD facilitates the degradation of the liver‐specific ER‐tethered transcription factor CREBH to downregulate FGF21 expression. HRD1‐ERAD catalyzes polyubiquitin conjugation onto CREBH at lysine 294 for its proteasomal degradation, bridging a multi‐organ crosstalk in regulating growth, circadian behavior, and female fertility through regulating the CREBH‐FGF21 regulatory axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.