This paper uses CFD (Computational Fluid Dynamics) numerically to simulate and calculate the axial flow pumps under different guide vane rotation angle and inlet angles and to conduct a comparative analysis of the inflow field. The results show that the influence of different guide vane rotation angles and inlet angles on the performance of the axial flow pump reflects in the operating conditions of large-discharge conditions. Adjusting the different guide vane rotation angles can significantly improve the efficiency of axial flow pumps. Moreover, the high-efficiency area of pump operation conditions is expanded nearly two times with the increase of the guide vane rotation angles under large-discharge conditions. At the same time, Under the design operating conditions, when the guide vane rotation angle is -2{degree sign}, the highest efficiency of the axial flow pump is 87.69%. However, under the linear change of the inlet angle of the guide vane, the highest efficiency of the axial flow pump can reach 87.71%. Finally, the model test verifies the reliability of the numerical simulation, and the research results are beneficial for improving the efficiency of the axial flow pump.
When the axial-flow pump is running, the blade angle is not fully adjusted or there are errors in the manufacture of the blades, which will lead to inconsistent blade placement angles during operation, and which will reduce the efficiency of the axial-flow pump. This paper uses the research methods of numerical simulation and model experiments to analyze the hydraulic performance and impeller structure characteristics of each flow components under different schemes when the angles of each blade of the S-type front shaft extension tubular pump device are inconsistent. The research phenomenon is that the guide vane greatly recovers the flow velocity circulation at the impeller outlet, reduces the hydraulic loss of guide vane, and widens the best efficiency range with an increase in guide vane blade angle. When the blade angle deviation occurs, the flow field of each blade channel affects each other, and the maximum decrease in the best efficiency is up to 7.78%, mainly due to the increased hydraulic loss in the outlet channel. The blade angle deviation will also affect the maximum equivalent stress and maximum deformation of the impeller, which is more obvious in large flow conditions. Inconsistent blade angles seriously affect the operating efficiency of the water pump and water pump device, and make the structural characteristics of the impeller worse.
The full-tubular pump is a new type of pump with a narrow range of stable operation. In order to improve the internal flow characteristics of the full-tubular pump under small flow conditions and improve the safe and stable operating range of the pump, this paper conducts numerical simulation of the full-tubular pump model based on the Reynolds time-averaged N-S equation and the SST k-ω turbulence model. The improvement mechanism of the parameters of the inlet grooves on the stall area of the full-tubular pump is studied, and the reliability of the numerical simulation of the full-tubular pump is verified by model tests. The research results show that the inlet groove can improve the head and efficiency of the full-tubular pump in the small flow area, and the head at the deep stall condition is increased by nearly 1.61 m. The inlet groove increases the pressure difference of the impeller, which increases the head and improves the hump. At the same time, the increase in the pressure difference of the impeller increases the backflow flow in the gap between the stator and the rotor. The groove can reduce the vortex strength and backflow range at the inlet pipe wall near the stall operating, and also improve the flow field at the impeller inlet. In terms of pressure pulsation, the groove can effectively suppress the low-frequency pressure pulsation at the inlet of the impeller of the full-tubular pump under stall conditions, and effectively reduce the amplitude of the main frequency pressure pulsation and improve the internal flow. The research in this paper can provide a reference for improving the flow characteristics in the stall condition of the full-tubular pump.
The full tubular pump device is taken as the research object in this article. This research method adopts the numerical simulation technology based on the SST (Shear-Stress-Transport) k-ω turbulence model to explore the internal flow characteristics of the stator–rotor cavity of the full tubular pump and optimize the stator–rotor clearance structure. The research shows that under the design conditions, compared with the axial flow pump, the torque increases by 47.91 N·m at the stator–rotor cavity structure and the efficiency decreases by about 20%. The torque at the rotor clearance of the full tubular pump accounts for about 50% of the torque at the rotor. Since there is a large area of backflow on both sides of the cavity, and there is a vortex structure on the inlet side of the cavity, it shows that the rotor structure and its area greatly affect the operating efficiency of the pump device. With the reduction in the rotor force area, the clearance length, and the outer diameter of the disc, the operating efficiency of the pump device gradually increases. Under the design conditions, the optimized model has a maximum efficiency increase of 14.04% and the torque at the cavity rotor is reduced by 39.25 N·m. The results show that the operating efficiency of the full tubular pump is closely related to its rotor structure area, and the force area of the rotor structure needs to be controlled in the actual design process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.