Vascular dementia (VaD) is the second most common cause of dementia, but the treatment is still lacking. Although many studies have reported that histone deacetylase inhibitors (HDACis) confer protective effects against ischemic and hypoxic injuries, their role in VaD is still uncertain. Previous studies shown, one HDACi protected against cognitive decline in animals with chronic cerebral hypoperfusion (CCH). However, the underlying mechanisms remain elusive. In this study, we tested several 10,11‐dihydro‐5H‐dibenzo[b,f]azepine hydroxamates, which act as HDACis in the CCH model (in vivo), and SH‐SY5Y (neuroblastoma cells) with oxygen‐glucose deprivation (OGD, in vitro). We identified a compound 13, which exhibited the best cell viability under OGD. The compound 13 could increase, in part, the protein levels of brain‐derived neurotrophic factor (BDNF). It increased acetylation status on lysine 14 residue of histone 3 (H3K14) and lysine 5 of histone 4 (H4K5). We further clarified which promoters (I, II, III, IV or IX) could be affected by histone acetylation altered by compound 13. The results of chromatin immunoprecipitation and Q‐PCR analysis indicate that an increase in H3K14 acetylation leads to an increase in the expression of BDNF promoter II, while an increase in H4K5 acetylation results in an increase in the activity of BDNF promoter II and III. Afterwards, these cause an increase in the expression of BDNF exon II, III and coding exon IX. In summary, the HDACi compound 13 may increase BDNF specific isoforms expression to rescue the ischemic and hypoxic injuries through changes of acetylation on histones.
The cerebral vascular system stringently regulates cerebral blood flow (CBF). The components of the blood–brain barrier (BBB) protect the brain from pathogenic infections and harmful substances, efflux waste, and exchange substances; however, diseases develop in cases of blood vessel injuries and BBB dysregulation. Vascular pathology is concurrent with the mechanisms underlying aging, Alzheimer’s disease (AD), and vascular dementia (VaD), which suggests its involvement in these mechanisms. Therefore, in the present study, we reviewed the role of vascular dysfunction in aging and neurodegenerative diseases, particularly AD and VaD. During the development of the aforementioned diseases, changes occur in the cerebral blood vessel morphology and local cells, which, in turn, alter CBF, fluid dynamics, and vascular integrity. Chronic vascular inflammation and blood vessel dysregulation further exacerbate vascular dysfunction. Multitudinous pathogenic processes affect the cerebrovascular system, whose dysfunction causes cognitive impairment. Knowledge regarding the pathophysiology of vascular dysfunction in neurodegenerative diseases and the underlying molecular mechanisms may lead to the discovery of clinically relevant vascular biomarkers, which may facilitate vascular imaging for disease prevention and treatment.
We previously showed a hydroxamic acid‐based histone deacetylase inhibitor (HDACi), compound 13, provides neuroprotection against chronic cerebral hypoperfusion (CCH) both in vitro under oxygen‐glucose deprivation (OGD) conditions and in vivo under bilateral common carotid artery occlusion (BCCAO) conditions. Intriguingly, the protective effect of this HDACi is via H3K14 or H4K5 acetylation–mediated differential BDNF isoform activation. BDNF is involved in cell proliferation and differentiation in development, synaptic plasticity and in learning and memory related with receptors or synaptic proteins. B6 mice underwent BCCAO and were randomized into 4 groups; a sham without BCCAO (sham), BCCAO mice injected with DMSO (DMSO), mice injected with HDACi‐compound 13 (compound 13) and mice injected with suberoylanilide hydroxamic acid (SAHA). The cortex and hippocampus of mice were harvested at 3 months after BCCAO, and levels of BDNF, AMPA receptor and dopamine receptors (D1, D2 and D3) were studied using Western blotting analysis or immunohistochemistry. We found that the AMPA receptor plays a key role in the molecular mechanism of this process by modulating HDAC. This protective effect of HDACi may be through BDNF; therefore, activation of this downstream signalling molecule, for example by AMPA receptors, could be a therapeutic target or intervention applied under CCH conditions.
Studies on the neurobiological causes of anxiety disorders suggest that the GABA system in-creases synaptic concentration and enhances the affinity of GABAA (type A) receptors for ben-zo-diazepine ligands. Flumazenil antagonizes the benzodiazepine binding site of the GABA (γ-aminobutyric acid) type /benzodiazepine receptor (BZR) complex in the central nervous sys-tem (CNS). The integration of the metabolites of flumazenil by LC-tandem mass spectrometry will complete understanding of the in vivo metabolism of flumazenil and accelerate radio-pharmaceutical inspection and registration. The main goal of our study was to investigate using reversed-phase HPLC (PR-HPLC) coupled with electrospray ionization triple quadrupole tan-dem mass spectrometry (ESI-QqQ MS) for the identification of flumazenil and its metabolites in a hepatic matrix. And a carrier-free nucleophilic fluorination with automatic synthesizer for [18F]flumazenil which applied to in vivo nano-positron emission tomography (Nano-PET)/computed tomography (CT) imaging and ex vivo bio-distribution used to analyze in normal rats. The study showed that 50% of the flumazenil was bio-transformed at 60 min by the rat liver homogenate, while one metabolite (M1) was a methyl transesterification product of flumazenil. In a rat liver microsomes system, two metabolites were identified (M2 and M3) as its carboxylic acid and hydroxylated ethylester forms, respectively. [18F]flumazenil in vivo nanoPET/CT imag-ing and ex vivo bio-distribution assay also showed significant effects on GABAA receptor availa-bility in the amygdala, prefrontal cortex, cortex, and hippocampus in the rat brain, worriless about the formation of metabolites. We showed completion of the bio-transformed course of flumazenil by the hepatic system; and [18F]flumazenil can be a good ligand and serve as a PET agent for determination of GABAA/BZR complex for multiplex neurological syndromes in the clinical stage.
Background: The molecular mechanisms of vascular cognitive impairment (VCI) are diverse and still in puzzle. VCI could be attributed to chronic cerebral hypoperfusion (CCH). CCH may cause a cascade of reactions involved in ischemia and neuro-inflammation which plays important roles in the pathophysiology of VCI. High-mobility group box protein 1 (HMGB1) is a non-histone protein that serves as a damage-associated molecular signal leading to cascades of inflammation. Increased level of HMGB1 has been established in the acute phase of CCH. However, the role of HMGB1 at the chronic phase of CCH remains elucidated. Methods: We performed modified bilateral common carotid artery occlusion (BCCAO) in C57BL/6 mice to induce CCH. We examined the cerebral blood flow (CBF) reduction by laser doppler flowmetry, the protein expression of HMGB1 and its pro-inflammatory cytokines (TNF-a, IL-1b, and IL-6) by western blotting and immunohistochemistry. The brain pathology was assessed by 7T-animal MRI and amyloid-b accumulation was assessed by amyloid-PET scanning. We further evaluated the effect of HMGB1 suppression by injecting CRISPR/Cas9 knock-out plasmid intra-hippocampus bilaterally. Results: There were reduction of CBF up to 50% which persisted three months after CCH. The modified-BCCAO animals developed significant cognitive decline. The 7T-MRI image showed hippocampal atrophy, although the amyloid-PET showed no significant amyloid-beta accumulation. Increased protein levels of HMGB1, TNF-a and IL-1b were found three months after BCCAO. HMGB1 suppression by CRISPR/Cas9 knock-out plasmid restored the CBF, IL-1B, TNF-alpha, IL-6, and attenuated hippocampal atrophy and cognitive decline. Conclusion: HMGB1 plays a pivotal role in the pathophysiology of the animal model of CCH and it might be a candidate as therapeutic targets of VCI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.