Water pollution has become one of the most serious issues threatening water environments, water as a resource and human health. The most urgent and effective measures rely on dynamic and accurate water quality monitoring on a large scale. Due to their temporal and spatial advantages, remote sensing technologies have been widely used to retrieve water quality data. With the development of hyper-spectral sensors, unmanned aerial vehicles (UAV) and artificial intelligence, there has been significant advancement in remotely sensed water quality retrieval owing to various data availabilities and retrieval methodologies. This article presents the application of remote sensing for water quality retrieval, and mainly discusses the research progress in terms of data sources and retrieval modes. In particular, we summarize some retrieval algorithms for several specific water quality variables, including total suspended matter (TSM), chlorophyll-a (Chl–a), colored dissolved organic matter (CDOM), chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP). We also discuss the significant challenges to atmospheric correction, remotely sensed data resolution, and retrieval model applicability in the domains of spatial, temporal and water complexity. Finally, we propose possible solutions to these challenges. The review can provide detailed references for future development and research in water quality retrieval.
The combination of remote sensing technology and traditional field sampling provides a convenient way to monitor inland water. However, limited by the resolution of remote sensing images and cloud contamination, the current water quality inversion products do not provide both high temporal resolution and high spatial resolution. By using the spatio-temporal fusion (STF) method, high spatial resolution and temporal fusion images were generated with Landsat, Sentinel-2, and GaoFen-2 data. Then, a Chl-a inversion model was designed based on a convolutional neural network (CNN) with the structure of 4-(136-236-340)-1-1. Finally, the results of the Chl-a concentrations were corrected using a pixel correction algorithm. The images generated from STF can maintain the spectral characteristics of the low-resolution images with the R2 between 0.7 and 0.9. The Chl-a inversion results based on the spatio-temporal fused images and CNN were verified with measured data (R2 = 0.803), and then the results were improved (R2 = 0.879) after further combining them with the pixel correction algorithm. The correlation R2 between the Chl-a results of GF2-like and Sentinel-2 were both greater than 0.8. The differences in the spatial distribution of Chl-a concentrations in the BYD lake gradually increased from July to August. Remote sensing water quality inversion based on STF and CNN can effectively achieve high frequency in time and fine resolution in space, which provide a stronger scientific basis for rapid diagnosis of eutrophication in inland lakes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.