This paper demonstrates that quantum-confined Stark effect (QCSE) within the multiple quantum wells (MQWs) can be suppressed by the growths of InGaN-based light-emitting diodes (LEDs) on the nano-sized patterned c-plane sapphire substrates (PCSSs) with reducing the space. The efficiency droop is also determined by QCSE. As verified by the experimentally measured data and the ray-tracing simulation results, the suppressed efficiency droop for the InGaN-based LED having the nano-sized PCSS with a smaller space of 200 nm can be acquired due to the weaker function of the QCSE within the MQWs as a result of the smaller polarization fields coming from the lower compressive strain in the corresponding epitaxial layers.
This paper describes highly efficient InGaN-based light-emitting diodes (LEDs) grown on volcano-shaped patterned sapphire substrates with embedded SiO2 (SVPSS).
This paper aims to investigate the light output power (LOP) of InGaN-based light-emitting diodes (LEDs) grown on patterned sapphire substrates (PSSs) with different symmetry. The GaN epitaxial layers grown on the hexagonal lattice arrangement PSS (HLAPSS) have a lower compressive strain than the ones grown on the square lattice arrangement PSS (SLAPSS). The quantum-confined Stark effect (QCSE) is also affected by the residual compressive strain. Based on the experimentally measured data and the ray tracing simulation results, the InGaN-based LED with the HLAPSS has a higher LOP than the one with the SLAPSS due to the weaker QCSE within multiple-quantum wells (MQWs).
We present new normally off GaN high-electron-mobility transistors (HEMTs) that overcome the typical limitations in multi-mesa-channel (MMC) width through modulation of the via-hole-length to regulate the charge neutrality screen effect. We have prepared enhancement-mode (E-mode) GaN HEMTs having widths of up to 300 nm, based on an enhanced surface pinning effect. E-mode GaN HEMTs having MMC structures and widths as well as via-hole-lengths of 100 nm/2 μm and 300 nm/6 μm, respectively, exhibited positive threshold voltages (V th ) of 0.79 and 0.46 V, respectively. The on-resistances of the MMC and via-hole-length structures were lower than those of typical tri-gate nanoribbon GaN HEMTs. In addition, the devices not only achieved the E-mode but also improved the power performance of the GaN HEMTs and effectively mitigated the device thermal effect. We controlled the via-hole-length sidewall surface pinning effect to obtain the E-mode GaN HEMTs. Our findings suggest that via-hole-length normally off GaN HEMTs have great potential for use in next-generation power electronics.
This paper reports the high light extraction efficiency will be obtained by considering the systematic design of twodimensional sub-wavelength photonic crystals, which is created on the p-side of InGaN-based light emitting diodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.