In this paper, the polarization dependent optical properties of InGaN/GaN multi-quantum wells (MQWs) LED with cascading plasmonic gratings are investigated using an angle-resolved photoluminescence (ARPL) spectrometer. The plasmonic gratings consist of two Ag gratings with a half-pitch displacement. The ARPL spectra of the TE-TM state present a broadband emission with resonance dips occasioned by the SP resonance while the TM-TE state presents resonance peaks with low sideband emission. The resonance properties can be tuned by modifying the geometric parameters of the plasmonic grating. The ARPL spectrum of the LED sample with pure GaN 1D grating is also measured and discussed. The investigated plasmonics LED represents resonance optical properties different from the conventional surface relief LED, which can be used in special applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.